Composers' = Desktop =Pro ject

TABULA VIGILANS

User Manual - Version 1.5

by Richard Orton
HTML version ed. A. Endrich

Acknowledgements

There are many who have assisted in the design of Tabula Vigilans, but I should like to single out for special mention Martin Atkins, who helped considerably with
a complete re-design of the parser using the Yacc utility. He and many others helped by simply being available to discuss the design of rules: I should like to
mention especially Archer Endrich, of the Composers' Desktop Project, and my colleagues at the University of York, Ross Kirk, Andy Hunt, Tony Myatt, David
Malham, Nick Fells and Mark Pearson.

Richard Orton,
York, 1994 - 2000; Willoughby on the Wolds, 2007

CONTENTS - INTRODUCING THE ENVIRONMENT

o List of Keywords, with descriptions
« Button Chart of keywords (Rules)
* Overview

1.0 Introduction

1.01 How to use the program

1.1 Some terms defined

1.2 Format of the Tabula Vigilans script
1.3 Initialisation rules

1.4 Procedure format

1.5 Comments

e 2.0 Rule-Lines

.1 Assignments

.11 Mathematical expressions
.12 Expression shorthand

.13 Mathematical functions

2

3

Rules

e o o o o o

« 3.0 Control flow

3.1 The while loop

3.2 The for() loop

3.3 Conditional evaluations

3.4 Moving_between procedures

e 4.0 Cells and Tables

4.1 Global and local cells
4.2 Indexing of tables
4.21 Fractional indexing
4.3 Table pointers

o List of keywords
Demonstration scripts

CONTENTS - LIST OF KEYWORDS

abs Mathematical | convert argument to absolute value

add_dec Rule conditionally add or decrement a value to a cell
alllocked Rule test whether all of a list of cells are 'locked’
anylocked Rule test whether any of a list of cells are 'locked'
arccosine Mathematical | the arccosine of x

arcsine Mathematical | the arcsine of x

arctangent Mathematical | the arctangent of x

arg Mathematical | employ a value passed from the command line
argc Command line | tests for correct no. of arguments on command line
args Command line | employ a string passed from the command line
break Control-flow break out of a for or while loop, with or without using a label
call Control-flow call another procedure

close_storefiles

Control-flow

close all open storefiles

cls Rule clear screen

continue Control-flow continue with a for or while loop, with or without using a label
compare Rule compare two input tables

control-out Rule send a MIDI control message

copy. Rule copy the value of an input cell into one or more output cells
copy_table Rule copy the contents of one table to another

cosine Mathematical | the cosine of x

dimensions

Mathematical

return the number of dimensions of a table

dimsize Mathematical | return the number of cells in a table dimension

embed Rule embed tables

end Control-flow end performance

end Rule exponential time-varying output

fail Rule used for testing and debugging

fill_table Rule fill a table with values

fold Rule time-based embedding of tables

for Control-flow set up a loop counter

gamma Mathematical | return a random number with a Gamma distribution probability
gauss Mathematical | return a random number with a Gaussian distribution probability
generate Rule generate first-order set of values in output table from an input table
if Control-flow conditional branch, with or without the 'else' construct
#include Initialisation include another TV script

int Mathematical | return the integer value of a number

List of Keywords ctd.

int2string Type conversion | converts an integer value to a string

interp_table | Rule interpolate a value between each corresponding value in two tables
lim Rule constrain a cell to lie within given limits

lin Rule create a linear time-varying output

lintrans Rule multiply and add combined in a single (linear) operation

local Control-flow declare a cell to be local (private) to the current procedure
lock Rule lock one or more cells

log Rule create a logarithmic time-varying ouput

logi0 Rule create a logarithmic time-varying ouput

loop Control-flow return control-flow to to the start of the current procedure
max Rule output the maximum value of a humber of input arguments
mean Rule output the average, or mean, of a nhumber of input arguments
message Rule output a message string to the console

messagl Rule output a message string to the console only the first time it is called
midichord Rule output a chord to the designated MIDI channel

midiech Rule output immediately (echo) a MIDI event

midiin Rule collect and store input MIDI data

midiout Rule output a MIDI message

midiset Rule set instruments to specific MIDI channels

min Rule output the minimum value of up to nine input cells

mouse Rule specify mouse position

mult Rule multiply the values of any number of input cells

mult_table |Rule multiply the values of a table by those of another table

num?2string

Type conversion

converts a floating-point value to a string

offset_table | Rule offset the contents of a table by a value

perm Rule randomly permutate the contents of the input table

pitchbend Rule send a MIDI pitchbend message

pop Rule fractal algorithm which employs an output cell and an input value
power Mathematical power function

print Rule print an input argument to the console

probe Rule display the input arguments to 2 decimal places on the console
probi Rule display values as integers on the console

rand Mathematical generate a random number between 0 and 1

random Mathematical generate a random number between two specified values
return Control-flow return to a previous procedure

round Mathematical return the nearest rounded integer

List of Keywords ctd.

scale_table | Rule scale each cell in a table by a specified constant
schedule Rule schedule a MIDI event for later performance
seg Rule create a linear time-varying output
shift Rule shift contents of a table one place to the left (or right)
showargs Rule show commandline string arguments (or right)
sine Mathematical give the sine of a value in radians
sort Rule sort a table into ascending or descending order
sqrt Mathematical give the square root of a value
store_digits | Rule set number of decimal places to store values in a file
store Rule store values to 2 decimal places in a file
storf Rule specify filename(s) for additional store functions
stori Rule store values as integers in a file
storefile Rule Zﬁ):c::i?éefiftr;arrfne(s) for (multiple) store functions
storestr Rule store an ASCII string in a file
subst Rule draw values out of two input tables with statistical weighting
sum Rule sum in the output cell the input arguments
sum_table |[Rule sum successive values in two tables
swap Rule swap the values of two cells
switchon Control-flow alternate conditional branch construct
system Operating system call | passes control to a named external program
table Initialisation create a table of given dimensions and sizes
tangent Mathematical the tangent of x
time Rule set a real-time counter
trigger Rule set a trigger cell
try Mathematical ascertain the return status of a rule
unlock Rule unlock previously locked input cells
wait Rule cause a complete stay of execution for the duration of the input cell
while Control-flow loop dependent on the evaluation of a test
xad Rule extract adjacent differences

ar Rule extract adjacent ratios

Introduction to Tabula Vigilans
Getting Started - Basic Terms & Concepts

Tabula Vigilans is a rule-based algorithmic composition system. The user writes a script - a text file — which contains the set of rules defining the
composition. The file is submitted to the program which then sets up appropriate data structures for the performance of the composition. The
performance itself consists of one or more classes of event:

« Sound Output via MIDI synthesiser(s)

» Messages to the computer console

« Data written to a file

» Graphical output to a screen (not incorporated in this version)

The performance may be directed or at least partly determined by one or more of a combination of input events:

» File and command line input
» Tracking position and movement of the mouse
e MIDI Input

This Manual gives the format of the script, and lists the set of rules which the composer may incorporate in it.

Section 1.0 Introduction

Computer systems appropriate to the version of Tabula Vigilans referred to in this Manual are any of those in the PC and SGI ranges. For the full use of MIDI and
sound capabilities, additional hardware may. sometimes be necessary. A multi-timbral MIDI synthesizer is recommended for sound output. The author has used
the Roland Sound Canvas SC-155 to test and develop the system, but example scripts may be edited for use with any multi-timbral synthesizer.

Section 1.01 How to use the program

Assuming the program is in the current directory, the MIDI synthesizer is connected to the computer via MIDI leads, and the audio connections from the
synthesizer are connected to a suitable amplifier and loudspeakers, then:

« There should be a script in the current directory — either one supplied as an example script with the Tabula Vigilans release or one made by the user with a
text file editor from the rule definitions supplied with this Manual. In due course, when many scripts are being used, it may be convenient to have a
separate directory for the scripts and data files, with a path through to the Tabula Vigilans program. In this case the current working directory will be that
containing the scripts.

The overall command line looks like this: tv [-I -iN -oN -v] rule_file

The script (rule_file) should have a name with a ".tv" extension. Let us assume for our immediate purpose that its name is "turtle.tv". Then, from a
commandline environment (such as DOS or COMMAND.TOS) the program can be initiated by typing:

tv turtle.tv <RETURN>

« The program parses the script, sets up all the data structures required, and sends a message to the console indicating that the performance is
ready to begin. The performance can then be started by pressing the <RETURN> key. The performance will begin. If there is no 'natural' end to
the script, or if the user wishes to terminate the performance early, then the <RETURN> key (Atari) or <CONTROL-C> (PC and SGI) should be
pressed again; the performance will end with a message saying how long the performance took.

« If it is wished to start the performance as soon as possible, without referring back to the user with a 'Ready to run performance' message, then
the -I flag (for 'instantaneous') can be used, as in:

tv -I turtle.tv <RETURN>
« Other flags:

e =iN - use MIDI IN device N (N > 0). 0 is the default, using the internal synthesizer.
e -o/N - use MIDI OUT device N (N > 0). 0 is the default, using the internal synthesizer.
e -v - verbose mode

« If there is a syntax error in the script, then an error message will be reported to the screen; the user should then check the syntax in the
appropriate place in the script with the help of this manual. Sometimes errors in the script will not be found until the script is being performed. Again,
an error message will be reported on the console, and the user will need to correct the script before trying a re-run.

Section 1.1 Some terms

In Tabula Vigilans:

« The script is a text file that is submitted to Tabula Vigilans for performance. A script comprises one or more procedures, of which one must be named
start(). Other procedures may be named at will by the user.
« A procedure consists of the procedure_name followed either by empty parentheses - () - or parentheses containing the name(s) of a cell whose value is
being inherited from the calling procedure, followed by any number of lines of script enclosed in brace delimiters: '{' at the beginning of the procedure, and
'}' to terminate the procedure.
A cell is a storage location in computer memory. A cell may contain effectively any real number.
Groups of cells are called tables. Tables can be of different dimensions, and they can be of any size in any dimension.
Lines of script within procedures may be of three types:
1. assignments - assigning values to cells
2. rules - operations upon cells and tables
3. control-flow operations - determined by the keywords:

.

break, call, continue, for, if, if-else, loop, return, while

« A primitive rule (hereafter called simply 'rule') forms a single line of text in the script. The action that Tabula Vigilans performs depends on the keyword
for that primitive rule, called an opname (operation name). Most opnames have input or output cells or tables. Outputs appear to the left of the opname,
inputs appear to the right.

« Each rule has a formal template as given for each opname in this Manual. The template indicates how many inputs or outputs the rule is expecting, and

whether they are cells, tables, or numerical values.

The completed script (the rule-file) forms the rule-set for that composition.

Some operations need to occur before the performance of the script. These are called initialisation rules and are defined at the head of the script, outside

any procedure.

.

Section 1.2 Format of the Tabula Vigilans script

The broad format of the rule-file is as follows:

[initialisation rules, if required]
start() procedure

[other procedures as required]

Section 1.3 Initialisation Rules [optional]

1.31 #include

It is possible to split a Tabula Vigilans script into two or more files using the #include statement. As an example, I have a large script called 'scorebld.tv', over
2000 lines of code in length. In order to be able to work with a smaller file = the one where the 'current development' is, I am able to split the script into two:
one called 'sb1.tv' and the current one (in development) called 'sb2.tv'.

At the top of the 'sb2.tv' file I put the statement:
#include "sbl.tv"

and by invoking the script as
tv sb2

everything works as if it were one file.

Caution: Remember that error messages with line numbers will only refer to the file with the error in - so you will have to work out which file the error is likely
to be in. I have not, thus far, used more than two #include files, but in principle any number of files could be included.

1.32 Table declaration with size

Table requires initialisation at the head of the script - i.e., outside any procedure. The user declares the name, dimensions and size of the table(s) required.
Examples of table declarations are as follows:
table PENT[20]

Here 'table' is the opname, i.e., the Tabula Vigilans keyword. The name of the table, chosen by the user, is PENT (here so named because it is to hold a set of
PENTatonic piches) - and there are going to be 20 values, assembled in a single-dimensioned array. There is a formal requirement that the first letter of a table
name be upper case. By convention, the entire table name is given in upper case, in order for the user to distinguish easily table names from cell names, which
are always in lower case.

table PURCELL[60][3]

Here the name is PURCELL, and it is a two-dimensional table. (By way of example, this might be intended to hold 60 notes, each with an associated duration and
dynamic.)

NB To ascertain the number of dimensions a table has, count the pairs of square brackets [] after the name. The size of each dimension is the
number inside the squared brackets.

1.33 Table declaration without size

As long as tables are filled from an external file using fill_table it is possible to declare them without specifying the size — the compiler will create a table of the
correct size automatically. This makes it easier to use longer tables such as those that might be generated by another program or TV script.

For example, the following will work correctly:

[At the top of the file]
table PTABLE[]

[and subsequently — probably at somewhere near the beginning of start()]
PTABLE fill_table "pitches.txt"

and "pitches.txt" may contain any number of (e.g.) MIDI note-numbers, as:

70 73 76 45 84 60 62 ...[etc.]

1.34 String tables
From version 1.5, TV supports string tables. These are identified by prefixing the character ' to the table name. String tables may be initialised with or without
size (the latter being followed by fill_table). Multi-dimension string tables are not supported. String variables are also currently not possible:

astring = 'STRTABLE[O]

will produce a syntax error.

Section 1.4 Procedure format

All procedures have the same general format: the procedure-name followed by parentheses, and any number of rule-lines enclosed by opening and closing
braces. One of the procedures must be named start(), which is where the performance is to begin:

start()

[any number of rule-lines, one to a line]
[loop instruction, if required]

The following is an example of a complete, though short, script, with one procedure only:

start()

// set MIDI channel @ to Instrument @

midiset 0, ©

// read mouse location, and scale output values

X, y mouse 48, 84, 30, 100

// display x and y output values messagl "Pitch\tAmplitude\n"
probi x, y

// send a MIDI output with x as pitch, y as velocity

// and a randomly-derived duration

midiout @, x, y, 0.2 * int(random(1, 4))

loop
}

Other procedures follow the same broad format, but may be named freely excluding only Tabula Vigilans keywords. Each is indicated by parentheses
() after the procedure-name, in a format similar to that of the start() procedure, and enclosed in braces, e.g.:

watery()
{

Again, within the procedure, the keyword 'loop' can be employed to send control back to the beginning of the procedure (in this case, to the
beginning of 'watery').

Section 1.5 Comments

A user comment may be placed in a script at any point after a pair of forward slashes (//). These have the special meaning for Tabula Vigilans that
the rest of the line is ignored. Such comments may also be used in any data files (see Manual entry for fill_table) created for performance.

Section 2.0 Rule-Lines

Rule-lines in the Tabula Vigilans script may be one of three types: assignments, rules, or control-flow indicators.

Section 2.1 Assignments

An assignment takes the form cell_name = expression, e.g.

a=0.25
where a cell (whose name here is 'a') is explicitly assigned a numerical value. The following assignment
a=b

means that the value of cell 'a' is given the same numerical value as that of cell 'b'.

Section 2.11 Mathematical Expressions in assignments

More complex expressions may be evaluated in assignments and as input arguments to rules and call, etc.. For example,
(b * c)/d

is a valid expression. The mathematical operators that can be used in assignments are:

+ - * /
% A && 11
plus minus multiply divide

modulo | power || logical AND | logical OR

Parentheses may be used to group items in an expression. For example,
b~c/d

is different from

b~ (c/d)

In such cases, parentheses may be used to force the operators into the associations the user intends.

Section 2.12 Expression shorthand
Some expression shorthand has been implemented, adopted from 'C'. These are given below, with their 'longhand' form: the forms are identical in
meaning:

Expression Shorthand &
Longhand

Shorthand | Longhand
_ b=b+1
a=++b az=b

_ a=b

a=b++ b=b+1
_ b=b-1
a=-b a=b

_ a=b

a=b- b=b-1
a+=b a=a+b
a-= a=a-b
a*=b a=ax*xbhb
a/=b a=a/b
a%=b a=a%»>b

Section 2.13 Mathematical Functions

There is a group of mathematical functions that can be used within assignments or as input arguments to rules. These are listed below, together with
the full name of the value they return:

Table of Mathematical Functions Available in Tabula Vigilans

abs(x) absolute value of x

arccosine(x) the arccosine of x

arcsine(x) the arcsine of x

arctangent(x) the arctangent of x

arg(n) the numerical value of the nth commandline argument
args(n) the string value of the nth commandline argument
cosine(x) the cosine of x

dimensions(TABLE) the number of dimensions a table has

dimsize(TABLE, dimension_number) | the size of the dimension indicated

log10(x) the base 10 logarithm of x

int(x) the integer value of x

natlog(x) the natural logarithm of x
power(x, n) X to the nth power

rand() a random number between 0 and 1
random(x, y) a random number between x and y
round(x) x rounded to the nearest integer
sine(x) the sine of x

sqrt(x) the square root of x

tangent(x) the tangent of x

try(rule) the status of executing the rule

All of these mathematical functions can be used in the following form:

a = sqrt(x)

and also in more complex expressions such as

1 + sqrt(x~(b/7))

try can be used in the same places as mathematical functions — see Section 2.3 below.

The Manual Pages below contain full descriptions of both mathematical functions and rules.

Section 2.2 Rules

A rule consists of a single line of text, comprising (from left to right) output (cell or table) name(s), opname, and input (cell or table) name(s). Valid
separators between cell/table names and the opname are spaces or tabs, while commas may be used to separate multiple inputs or outputs. Each
primitive rule associated with an opname has a formal template as given in the manual pages, which indicates how many inputs or outputs a rule
should have. For example, some rules have no outputs, some have no inputs. Some have fixed numbers of outputs or inputs, while others permit a
variable number of them.

Cells may be named freely by the user, the only restriction being that the first character of the name should be a lower case letter. There is no
restriction on the length of the name, though spaces within the name are not allowed: the underline character (_) may be used to separate significant
name-syllables. Numerical values (such as 3 or -5.7) may also be used as constants in place of cells; these may be integer or floating point numbers
as needed.

Section 2.3 try - testing the return status of a rule

The keyword try can be used in conjunction with a rule to ascertain the return status of that rule. An example where this is very useful is with the
rule midiout, which outputs a MIDI message if it is not already in the process of doing so. The return status of midiout is greater than zero if it has
succeeded in sending out one or more MIDI note-on messages, and less than zero if the matching note-off has not yet been sent. The use of try will
mean that updating of channel, note, velocity and duration parameters can take place before the next note or notes are due to be started.

The appropriate rule-line would be in the following form:

if(try (midiout chan, note, amp, dur, 1) > @) {
....[update chan, note, amp, dur, etc]

Section 3.0 Control flow within a script

Performance of the script begins at the start() procedure. If start()is the only procedure, and if there is no loop instruction, then there is no repeated
execution, and the performance ends having traversed the start() procedure just once! If there is a loop instruction, then control will be passed back
to the beginning of the start() procedure and the cycle of rules will be iterated repeatedly. There are, of course, methods for ending a performance
from within the script - for example, by testing some varying cell value. But it is possible for some performance never to have a formal method of
ending; in these circumstances the user simply terminates the performance by pressing the <RETURN> key (Atari) or <CONTROL-C> (PC and SGI)
on the computer console.

Section 3.1 The while() loop

Another way of creating an infinitely repeating loop is to employ a while() loop. The extent of a while() loop is delimited by curly braces, as in:
while(x) {

....a number of rule-lines

«...a number of rule-lines....

}

This rule tests for the condition within the parentheses, and if the value tested (e.g. 'x') is non-zero, then the while loop is iterated. So if the user
places a constant within the while loop, as in

while(1) {

}

then clearly the value of '1' can never change, and so the performance will continue indefinitely.

It is common for conditional tests to be set within the while parentheses - see Section 3.3, Conditional Evaluations, below.

Section 3.2 The for() loop

A method of controlling a definite number of executions of a loop is provided by the for() mechanism. Here a counter is set up, which determines the
number of times the loop is performed. The form of the for() loop is as follows:

for(i =0; 1 < 10; i += 1) {

}

Within the for() parentheses are three subdivisions, separated by a semicolon. The first of these assigns the initial value to a counter, the second
contains a conditional test which, if evaluated as TRUE, determines that the following loop of rules will be executed once more, and the third indicates
what action is to be taken after each iteration.

[Caveat,'C' programmers: do not use 'i++' in the last division of for(); the formal definition of Tabula Vigilans demands that this be an assignment!]

In the case shown above, 'i' is initially set to 0, the loop is performed as long as the value of 'i' has not reached 10, and its value is incremented by 1
after each iteration. So in this case the loop will be iterated 10 times. Of course, the following is also legal in Tabula Vigilans:

for(pitch = highC; pitch > lowD; pitch = pitch - interval) {

}

The structure of the for() loop is the same, but here 'highC', 'lowD' and 'interval' are cells whose values will have been set elsewhere in the script or
will have been arrived at earlier in the performance.

Section 3.3 Conditional Evaluations: if() and switchon

3.31 if ... then ... else

One of the main control flow mechanisms is given by the if() conditional branch, with or without the 'else' extension. It may be employed solely
within a procedure, or in conjunction with the control-flow routine call it may be used to move from one procedure in the script to another.

The general form of if() is as follows:
if(some condition is TRUE) {

then execute the rules
in this block

which may be extended by 'else' as follows:
if(some condition is TRUE) {

then execute the rules
in this block

}
else {

move to this block

and execute these rules instead
}

The conditional evaluations use the comparative operators below

< less than

\"

greater than

== || is equal to

1= || is NOT equal to

<= | is less than or equal to

>= || is greater than or equal to

&& | logical AND

11 logical OR

The following are valid forms of conditional testing:

if(a < b)
if((x/3 >= z * 0.5) && (y != @))

i.e., within the parentheses pairs of expressions have a relational operator between them.

Note that while also uses the same types of conditional evaluation as if.

3.32 switchon ... case statements

In order to avoid chains of if..then..else.. statements, it is possible to use the switchon ... case construction.

The following script, 'swdemo.tv' should exemplify its use:

start()
b = int(random(@, 3.999))
while(1) {
cnt += 1

message "\n"
print cnt, 4, ©
switchon b {

case 0: {
message ": Case @ chosen"
b = int(random(@, 3.999))
}
case 1: {
message ": Case 1 chosen"
b = int(random(@, 3.999))
}
case 2: {
message ": Case 2 chosen”
b = int(random(@, 3.999))
}
case 3: {
message ": Case 3 chosen"
b = int(random(@, 4.999))
¥
default: {
message ": No action. There were "
print cnt, 4, 0
message " iterations.\n"
end
}

Section 3.4 Moving between procedures: call

The call routine may be used to move from one procedure to another. The keyword is used in the following manner:
call procedure_name()

Values may be passed to the procedure by including parameters in the parentheses of the procedure called, as in:
call refrain(5)

call update(x)

In the first of these examples, the value 5 is passed to the procedure 'refrain’; in the second example, the current value of cell 'x' is passed to the
procedure 'update'.

Multiple values may be passed, as in the following script:
start()
X = 9.3
=77

y
call proci(x, 5, y)
}

proci(f, g, h)
{

probe f, g, h
}

For further examples of the use of call for moving between procedures, see the Manual entries for call, return, break and continue, and scripts in the
appendices.

Section 4.0 Cells and Tables

Section 4.1 Global and Local cells

Cells are created by the Tabula Vigilans parser as it encounters them in the script. On creation, cells are automatically initialised to zero, until the
script assigns a value to them. By default, all cells are global, i.e., they can be accessed from any procedure.

Local cells, private to a particular procedure, must however be declared. This means that the same cell name in another procedure will NOT be used,
only the local one. Declarations of local cells at the head of the procedure are made as follows:

local cellname

Section 4.2 Indexing of Tables

Declaration of tables and their dimensions and sizes, in initialisation rules, has already been mentioned (see Section 1.3). Tables are collections of
cells, and a cell can always be assigned a particular value in a table by indexing the table. It is important to note that table indices always run from
zero to the table size - 1. So, if a table has been declared

table PITCHES[18]

then the first value in the table PITCHES will be indexed as PITCHES[0] and the last - the eighteenth — as PITCHES[17]. In Tabula Vigilans, indices to
tables are always made modulo the table size, so no harm will be done by indexing apparently outside the table. PITCHES[18], for example, will give
the same result as PITCHES[0]. Even if the index goes negative, no harm will result: PITCHES[-1] is equivalent to PITCHES[17], PITCHES[-2]
equivalent to PITCHES[16], etc. The following is enough to continually cycle round a table:

PITCHES[x++]

The index 'x' is used and then incremented each time it is accessed.

Section 4.21 Fractional Indexing

There is an alternative form of indexing in Tabula Vigilans which can prove useful: fractional indexing. Here the index is always taken as fractional,
i.e., lying between 0 and 1. The notation used is the vertical line also used for OR: '|', which is placed around the index inside the square brackets:

PITCHES[|x]|]

Here the index 'x' is taken to be a fractional index and will give the table value x of the distance along the table. If x is zero, then the first value in the
table will result; if x is 1, then the last value in the table will result. If x is 0.25, then the value returned is that contained one quarter of the distance
along the table. If x is greater than 1, then only the fractional part of x is used as the index. If x is negative, then the absolute value of x is used. The
main advantage of fractional indexing is that it can be used to access arbitrary-sized tables.

Section 4.3 Table Pointers

Tables must be initialised at the head of the script (see Section 1.3). However, it is possible to use table pointers within a procedure simply by naming
them, and assigning them to an already existing table. A table pointer might be used to point to different tables at different moments in a piece. The
following shows the declaration of a table at the head of the file, and, later, within a procedure, a table pointer assigned to it:

table NOTES[7]
[...etc...]
[...now within a procedure...]

PITCHES = NOTES

It is worth noting that the fractional indexing mentioned in section 4.3 above is particularly useful when table pointers are used with the same index
pointing to differently-sized tables. For example, suppose we have two tables A and B; A contains 13 values, B contains 29. In the following script,
when the table pointer TP is changed from A to B, the fractional index 'ndx"' will still point two-thirds along the larger table. This would be much
trickier with integer indices:

Tabula Vigilans example to demonstrate
fractional indexing with table pointer

table A[7]
table B[13]

start()

// Initialise the tables

for(i=0; i<dimsize(A, 1); i+=1) {

Ali] = i+1

¥
for(i=0; i<dimsize(B, 1); i+=1) {

B[] = 11+i

¥
// Set table pointer TP

TP=A

// Set fractional index

ndx = 0.66

// Show value of TP with fractional index

message "Value of TP->A with fractional index @.66\n"
print TP[|ndx|], 5, ©
// Change TP to point to table B

TP = B

message "\nValue of TP->B with fractional index ©.66\n"
print TP[|ndx|], 5, ©

message "\n"

}
Output:

Value of TP->A with fractional index 0.66

5

Value of TP->B with fractional index 0.66

19

The list of currently implemented keywords comprising primitive rules (opnames), control-flow

mechanisms and mathematical functions is shown in the following Chart:

TV Keyword Buttons

abs add_dec alllocked anylocked arccosine arcsine arctangent
arg argc args break call close_storefiles || cls
continue | compare control-out | copy copy_table | cosine dimensions
dimsize embed end exp fail fill_table fold

for gamma gauss generate if #include int
int2string || interp_table || lim lin lintrans local lock

log log10 loop max mean message messagl
midichord | midiecho midiin midiout midiset min mouse
mult mult_table || natlog num2string || offset_table | perm pitchbend
pop power print probe probi rand random
return round scale_table | schedule seg shift showargs
sine sort sqrt store_digits || store storf

stori storefile storstr subst sum sum_table swap
time trigger try switchon system table tangent
unlock wait while xad xar

abs - Mathematical function

Converts the argument to its 'absolute' (i.e. positive) value. Examples:

x = abs(x) //Force x to become positive

y = abs(x) //Assign to y the positive value of x

z

abs(x-3.7) //Assign to z the positive value of (x-3.7)

add_dec - Rule

Conditionally add or decrement a value to a cell. There are four arguments: one output cell, and three input expressions, as follows:
out add_dec compl, comp2, value
o If 'compl'is less than 'comp2’, then 'value' is added to 'out'

o If 'comp2'is less than 'comp1l’, then 'value' is subtracted from 'out'
o If 'compl'is equal to 'comp2' then no action is taken.

Rule Return Status:

1 if action has taken place, 0 if no action has been taken.

alllocked - Rule

Test whether all of a list of cells are 'locked' (see 'lock' rule). Should be used in conjunction with try (see 'try' rule).
Examples:

probi try(alllocked a, b, c, d)

if(try(alllocked a, b, c, d) {

}
Rule Return Status:

1 if all cells are locked, O if one or more is unlocked.

anylocked - Rule

Test whether any of a list of cells is 'locked' (see 'lock' rule). Used in conjunction with try (see 'try' rule).
Examples:

probi try(anylocked a, b, c, d)

if(try(anylocked a, b, c, d) {

}
Rule Return Status:

1 if any cell is locked; 0 if none are locked.

arccosine — Mathematical Function

Also known as the 'inverse cosine'.
Example:
a = arccosine(b)

The input value to the function, b in the above example, which is NOT checked, should be a value between -1 and +1. The output will be
a value between pi and zero.

arcsine - Mathematical Function

Also known as the 'inverse sine'.
Example:
a = arcsine(b)

The input value to the function, b in the above example, which is NOT checked, should be a value between -1 and +1. The output will be
a value between -pi/2 and +pi/2.

arctangent - Mathematical Function

Also known as the 'inverse tangent'.
Example:
a = arctangent(b)

The input value to the function, b in the above example, may be from -largevalue to +largevalue. However, values below, say, -10 and
above +10 will have decreasing effect. The output will be a value between -pi/2 and +pi/2.

arg — Mathematical function
Employ a value passed from the commandline. The number (n) of the argument will correspond to the nth value on the commandline,
after the program name and the script name.
Example:
[On commandline]:
tv script 7.3 11 -3.05

[Within the script]:

a = arg(l)

b = arg(2)

c = arg(3)
Result:

'a' will take the value 7.3; 'b' the value 11, and 'c' the value -3.05

argc — Command line function

This function (previously undocumented) tests whether the correct number of arguments have been supplied on the command line. It is
placed at the head of initialise(). It is customary to show the Usage and end running the script if the number of arguments is
insufficient. The following example, which uses the ability (new in 1.5) of message to display a variable, illustrates this:

if(argc() < 5) { //command line has less than 5 arguments

correctnumargs = 5

message "\nInsufficient arguments on command line\n"

message << "\nYou should have ", int2string(correctnumargs), " arguments on the command line, otherwise the script
will end or, better, show the Usage and end\n\n" >>

call usage()

end

}

The script argctest.tv illustrates the use of the function.

args — Command line string function

Pass a string (e.g. a filename) from the commandline. The number (n) of the argument will correspond to the nth string on the
commandline, after the program name and the script name. It is possible to use this command line function with the script functions
storefile, storstr and fill_table, and to display the string arguments with showargs.

Example:
[On commandline]:
tv script file.txt
[Within the script]:
storefile args(1)
Result:

The file named on the command line (‘file.txt' in this case) will be used to store any data written from the script.

break — Control-flow

Break out of a 'for' or 'while' loop, with or without using a label. Without a label, control flow passes to the rule-lines immediately after the
'for' or 'while' loop in question. If the break is to occur across procedures (i.e., jumping out of one procedure and passing to another) the
label mechanism should be used. A label is any convenient name which is placed immediately after the 'for' or 'while' keywords in order to
identify them as the break location. Control then passes to the rule-lines immediately after the label, even if the label is in another
procedure.

Example:

[In procedure a()...]

for wednesday (i 5 1< 7; i+=1) {

=0
if(x > 32) {
break
// breaks out of this for()loop
} // no label reference required

}
[In procedure b()...]
if(t > 10) {
break wednesday
// break until after the 'wednesday'’

// label in procedure a()
}

call Control-flow

Call another procedure. When a performance first starts, control will be with the start() procedure. At some point it may be desirable to

jump to another procedure. Suppose the user has named this second procedure watery(). Then the rule-line to do so will take the form:
call watery()

Moving back to the originating procedure can be effected by the return keyword (g.v.).

Values may be passed to procedures by placing cell names or values inside the parentheses of the procedure name. So
call watery(15.7)

will mean that the value 15.7 is passed to the procedure 'watery()'.
call watery(x)

will mean that the present value of 'x' in the originating procedure will be passed to the procedure 'watery()'. The receiving procedure
'watery()' may then assign a cell name, which in this instance will be local, to the value inherited from the originating procedure, by giving
it a new name. E.g.:

watery(qq)
{

if(qq < time_passed) {
..... [etc]

In this case the cell local to the procedure 'watery()' is called 'qq' and is assigned the value inherited from the call in the originating
procedure (in the examples above, either 15.7 or 'x').

Note that multiple values may be passed, if required, as shown in the following short script:

start()
X = 9.3
=77

y =
call proci(x, 5, y)
}

proci(f, g, h)
{

probe f, g, h
}

It is also possible to employ a label immediately after call, as in:
call saturn watery()

In this case the label ('saturn') may be used by a later procedure to return to this location. More than one call may use the same label -
there is no conflict as the most recent label is used . (See Manual entry for return.)

close_storefiles — Control-flow

Close (all) open storefiles. This function may be used if the user wishes to re-use previously-written data later in a script. When a storefile
is closed, data from the file may be used again by accessing it with 'fill_table'. The following script shows this process in embryo:

// ‘'numbers.tv' - show the use of 'close_storefiles'
table NUMBERS[4]

start()
{

storefile "numbers.txt"
for(i=0;i<dimsize (NUMBERS, 1); i+=1) {

NUMBERS[i] = int(random(3, 17))
}

message "Table of 4 Numbers is
for(i=0; i<dimsize(NUMBERS, 1); i+=1) {
print NUMBERS[i], 5, @
stori NUMBERS[i]
storstr "\t"

}

message "\nNow closing storefile 'numbers.txt’.\n"
close_storefiles
NUMBERS fill_table "numbers.txt"
perm NUMBERS
message “"Numbers have been read in again from the closed file,"
message " and scrambled:\n\tthe order is now "
for(i=0; i<dimsize(NUMBERS, 1); i+=1) {
print NUMBERS[i], 5, @
}

cls — Control-flow

Clears the screen. Allows the user to remove previous message, print and probe data from the screen, either at the beginning of a
performance, or even during performance.

compare - Rule

Prototype script line:
C compare A, B [,typeflag]

This rule compares two input tables, and writes into an output table either the values which are common to both, or values which appear
in one input table only. If 'typeflag' is zero or is omitted, then the output table will put into the output table those values which are
common to both tables. If 'typeflag' is non-zero, then the exclusive option will operate.

Suppose we have the following four tables:

A[8] contains the following MIDI notes:
62 65 70 71 72 63 66 67

while table
B[9] contains the following MIDI notes:
7172 63 66 67 64 68 69 73

C[5] and D[7] have been declared but not yet initialised.
After the following script line:
C compare A, B, ©
or

C compare A, B

then table C will contain
7172 63 66 67

because 'typeflag' is 0, meaning inclusive.
However, with 'typeflag' set to 1 - meaning exclusive - as in:
D compare A, B, 1

then table D will contain
62 65 70 64 68 69 73

which are the numbers appearing in either table but not in both.

Rule Return Status:

1 after the first and only action; thereafter 0

continue - Control-flow

Continue with a for() or while() loop, with or without using a label. Without a label, control flow continues with the local for or while. A
label is any convenient name which is placed immediately after the for or while keywords in order to identify them as the location for
continue. Labels should be used if continue calls are made across procedure boundaries.

Example:

[In procedure a()...]
for thursday (i = @; i < 7; i+=1) {
if(i <4]]i>a){
continue // continues with this for() loop
// - no label reference required

[In procedure b()...]

if(t > 10) {
continue thursday // continue with the 'thursday’
// label in procedure a()

control_out - Rule

Send a MIDI control message. There are three input cells: 'Channel' (0 - 15), 'Control-Number', and 'Value', respectively. The following
example script uses control_out to continuously vary the volume of two MIDI channels:

start()

if(first == 0) {
midiset 0, 71
midiset 1, 71

if(try(midiout @, pch, 160, dur, 1) > @) {
crdurl = random(@.15, 0.45)
pch = random(48, 72)

}

if(try(midiout 1, pch+1, 100, dur, 1) > 0) {
crdur2 = random(@.15, 0.8)

dur = random(@.4, 2.0)

a 1lin crdurl, 0, 110, 60
b 1lin crdur2, 1, 110, 60
control_out 9, volume, a
control_out 1, volume, b

loop

Rule Return Status:

Always 1

copy - Rule

Copies the value of an input cell into one or more output cells. Example:
a, b, c copy x

will copy the value of 'x' into a, b, and c.

Table pointers can also be assigned with copy, as in:
A, B copy C

NB Since copy is a rule, it should always be employed instead of assignments where cell-locking or unlocking is being employed.
Mathematical assignments (of the type 'a = 5.6') will always override cell-locking.

Rule Return Status:

1 if copy has succeeded
0 if one or more copies has failed (e.g. if a cell has been locked).

copy_table - Rule

Copies the contents of one table to another. If the tables are of different sizes, then only values to the extent of the smaller-size table will
be copied. For example,
BBB copy_table AAA

will copy the contents of table 'AAA' to table 'BBB'.

Rule Return Status:

1 if copy_table has succeeded in full
0 if the tables were of different sizes

cosine - Mathematical Function

Give the cosine of a value in radians; the output will thus always be a value between -1.0 and +1.0.
Examples:

a
a

cosine(2.17)
cosine(b)

Places the cosine of the input cell 'b' into cell 'a'.

dimensions - Mathematical Function
Return the number of dimensions of a table
// Script example:
table TAB[10][5][2]
start() {
probi dimensions(TAB)
}
The script will print the number '3' to the console.

dimsize — Mathematical Function

Return the number of cells in a table dimension. There are two required arguments to dimsize: the table name (or table pointer-name)
and the number of the dimension about which information is required. If, for example, a table has been declared

table AAA[8]

at the head of the script, then
x = dimsize(AAA, 1)

will assign the value 8 to 'x'.

Note that dimsize is an acceptable argument for the int2string() and numz2string() functions (from Version 1.5), as in:
int2string(dimsize('SFILELIST, 1))

when used in a message or messagl statement.

dimsize can also be used with string tables in FOR loops to determine the end point of the loop:

for(i = @; i <= dimsize('SFILELIST, 1); i += 1) {
embed - Rule

Embed two one-dimensional tables. The form of the rule is:

C embed A, B
The size of output table C should optimally be the sizes of input tables A and B multiplied together. (If smaller, embedding will be
incomplete; if larger, the last table values will contain zeroes.) The data in the input tables should be equivalent, but the values in table B

are made relative and then used to offset (by addition, NB) in turn each value in table A to create the output table C. While the rule runs
in performance time, once the output table has been created it thereafter has no effect, even if values in the input tables change.

Rule Return Status:

1 after the first and only action; thereafter 0
end - Control-flow

Ends performance. Under normal usage, the performance of Tabula Vigilans will continue until the user presses a key on the console.
However, end is incorporated for use in those circumstances where it is desired that the performance end when a cell has reached a
certain value. Example:

if(t >= 180.00) {
end
}

exp - Rule

exp creates an exponential time-varying output moving between a minimum and a maximum value.
The prototype of the rule is:
out exp dur, [, direction [, scale_valuel, scale_value2]]

'out’ is the current value of the output
'dur' is the duration over which exp creates the exponential time-varying value
['direction'] — optional - is the starting direction:
0 (default) moves first from minimum to maximum
1 causes the first movement to be from maximum to minimum
NB Direction will be applied whichever order the values appear in 'scale_valuel' and 'scale_value2'.

'scale_valuel' and 'scale_value2' are the values to be supplied for the minimum and maximum. If these are omitted, minimum is 0,
maximum is 1.

Rule Return Status:

1 at the end of each exponential segment reached
0 on every other occasion

fail — Rule
This rule is used for testing and debugging.

Rule Return Status:

Always O

fill_table - Rule

Fill a table from a textfile.
The table will previously have been declared at the head of the script and may be sized (e.g. TABLE[6]) or unsized (e.g. TABLE[]).
Fill_table may be used to fill a numerical or string table (the latter denoted by a prefixed ' character).

Example:
AAA fill_table "pitches" [, pos]

In this case table 'AAA' will be filled with values from a text file named "pitches" which is assumed to be in the current working directory.
Unless filling a string table, the file should contain integer or floating-point values, separated by white space (i.e., spaces, tabs or carriage
returns). Comments may be inserted after the double slash character //. If there are more values in the file than there are cells in the
table, then only the first values to the size of the table will be read; if there are not enough values to fill the table, then the remainder of
the table will contain zeros.

If the optional argument 'pos' is used, then this will be taken as the starting number. If 'pos' is 0 or 1, then fill_table will read from the
beginning of the file; this is the default condition. If 'pos' is any number greater than 1, then the rule will begin the fill from that position.

AAA fill_table "intervals", 19

This example will fill table AAA starting with the 19th value in 'intervals'.

'SFILELIST fill_table "sndlist.txt"
In this case, a table of strings (text) is filled from a list of strings in a text file. Note that the text file should end on the final line and not
put a carriage return after the final item. Otherwise, a blank item may appear when using the string table. Only single-dimension string
tables are valid.

Currently there is no way to test the return status of fill_table.

fold — Rule

Time-based (multiplicative) embedding of one-dimensional tables. The form of the rule is:
C fold A, B

The output table 'C' will hold the values of table 'B' folded into table 'A' (compare rule embed). The data in the input tables are regarded
as equivalent, but those in table 'A' are absolute (in seconds), those in table 'B' are relative, used to scale by multiplication the successive
values of table 'A". The size of the output table should be the sizes of the input tables multiplied together. While the rule runs in
performance time, once the output table has been created it thereafter has no effect, even if values in the input tables change.

Rule Return Status:

1 after the first and only action; thereafter 0.
for — Control-flow
Set up a loop counter, of the form:

for(i = 0; i < 12; i+=1) {
A[i] = i+l

This simple example will set up a table 'A" with numbers 1 - 12 in it. However, the for loop, bounded by braces, may contain indefinitely
many rule-lines.

gamma - Mathematical Function

Prototype:
g = gamma()

The result is a random number lying between 0 and 1, exhibiting Gamma Probability Distribution characteristics. The statistical weighting
is biased to the first half of the range, with a curve as shown below:

|+ .Gamma distribution curve

gauss - Mathematical Function

Prototype:
g = gauss()

The result is a random number lying between 0 and 1, exhibiting Gaussian Probability Distribution characteristics. The statistical
weighting is biased to the middle of the range, with a curve as shown below:

“Gaussian distribution curve

generate — Rule

Prototype:
BBB generate AAA
This rule is designed to generate a first-order set of values in the output table by extracting adjacent intervals from an input table and in

turn incrementing and decrementing them from each member of the input table. The output table is sorted in ascending order, and if the
size of the output table differs from the optimum, the user is advised.

Rule Return Status:

1 after the first and only action; thereafter 0O
if — Control-flow
Conditional branch, with or without the else construct. The following syntax for the rule-file is required:

if(expression relation expression) {
...other rule-lines...
...other rule-lines...
...other rule-lines...

}

The relation between the expressions should be one of the following:

Expression Relationships

< |/less than

> | greater than

== |lis equal to

1= |is NOT equal to

<=|is less than or equal to
>= |lis greater than or equal to
&& || logical AND

|1 |logical OR

The following are examples of valid if clauses:
if(a == b)
if((a >= 3) && (b > a))
if(a*7 < b%0.3)

else may follow the 'if', in the following manner:
if(a >= 100) {

b a%7
} els

}

neAu

e
b=a%3

#include - Initialisation

Incorporate another tv script within the present script.
Example:
[At the beginning of the current script:]

#include "otherfuncs.tv"

int — Mathematical Function

Return the integer value of a number (i.e the integer next lower than the number). Examples:
x = int(77.35)
will assign the value 77.00 to x, and

55.32
int(a)

a
b

will assign the value 55.00 to b.

int2string — Type-conversion Function

Converts an integer to a string.
Examples:

int2string(12)
int2string(int_variable)

The function enables an integer value to be displayed by message / messag1 or stored by storstr, using their second format in which
one or more strings are enclosed within double-chevrons << >>. (See message or storstr for an example.)

The converted string cannot be assigned to a variable or an element of a string table. Thus the following will give syntax errors:

a = int2string(60)
'STRTABLE[@] = int2string(60)

interp_table - Rule
This rule interpolates a value between each corresponding value in two tables, and writes the result into a result table. An example rule-
line is given below:

A interp_table B, C, 0.3

This means that each cell value in table A is calculated from the same index value of table C multiplied by 0.3, plus the same index value
of table B multiplied by (1.0 - 0.3), or 0.7. If the rightmost input is itself a cell, when iterated while varying this value between 0 and 1
will result in a series of interpolated tables that move from table B to table C. Only the fractional part of the value of the right-most cell is
taken as the rule argument. If tables of different sizes are given to the rule, then only the outputs corresponding to the smallest-size table

are calculated.

Note - this rule does not apply to string tables.

Rule Return Status:

Always 1
lim - Rule

Constrain a cell to lie within given limits.

lim has one output cell, and two inputs: 'limit-low' and 'limit-high'. The rule takes the form:

// limit cell 'a' to lie between limits
a lim -1.0, 1.0
a lim b, ¢

In the first of these, the meaning is that the value of cell 'a' is constrained to lie within the limits -1 to +1. In the second, 'a' is
constrained to lie between the limits denoted by the values within cells 'b' and 'c'. The convention is that the values after the opname are
'low limit' and 'high limit' respectively, but in practice it does not matter - after all, the values within named input cells may change

dynamically and 'cross over' by design. In either case, if the value in output cell 'a' lies outside the delimitation zone, it will be amended
to the limiting value.

Rule Return Status:

1 if the limiting operation has succeeded
-1 if the operation has failed (because the output cell is locked)
0 if no action has been taken (because the output cell lies within limits).

lin — Rule

lin creates a linear time-varying output (i.e., moving between a minimum and a maximum value). The prototype of the rule is:
out lin dur, [, direction [, scale_valuel, scale_value2]]

'out' is the current value of the output
'dur' is the duration over which lin creates a linear time-varying value

['direction'] - optional - is the starting direction:
0 [default] moves first from minimum to maximum
1 causes the first segment to move from maximum to minimum

[scale_valuel & scale-value2] are the values to be supplied as minimum and maximum respectively. If omitted, minimum is
0, maximum is 1.

Rule Return Status:

1 when lin is first called, and thereafter as the end of each linear segment has been reached.
0 at each other occasion.

lintrans - Rule

Implements a combined multiply and add in a single operation - a linear transformation of the type a = b * ¢ + d. There is one output
cell, and three input arguments. The prototype rule is:

result lintrans input, multiply_value, add_value
or, using the same identifiers as in the equation above:
a lintrans b, ¢, d
Example:
a lintrans b, 2.3, 1.7
If the output cell is identical to the input cell, the linear transformations will of course be incremental:

a lintrans a, 2.3, 1.7

Rule Return Status:

1 if the lintrans operation has succeeded
0 if the output cell is locked

local — Control-flow

Declare a cell to be local (private) to the current procedure. This has the effect that the same name can be used in other procedures with
no conflict. Note that when a parameter is passed from one procedure to another, the cell receiving the parameter value is always local in
scope.

Example:

solar()

local sun // the cell 'sun' is private to the procedure 'solar’

lock — Rule

Lock one or more cells.

All cells by definition contain values which may be treated as variables, i.e., they may be changed dynamically within the performance
loop. However, there may arise occasions when the user does not wish the variable to be changed. In such cases the user may lock the
variable against change, in effect making it a constant for the duration of the lock. (There is a complementary rule unlock which unlocks
the cell again, and cells may be locked and unlocked at will during different segments of the performance loop.) A cell being locked will
often change the meaning of a rule: examples of this are given in this Manual for lim and sum. Example rule-line:

lock a, b // lock cells 'a' and 'b'

It is important to understand that rules will only obey rules. Assignments will always over-rule rules. In the following block:

a = 136
lock a
a copy 245

since copy is a rule, it will obey the lock, and at the end of this block, 'a" will still equal 136. However, after the following:

a = 136

lock a

a = 245
'a' will now equal 245, because the assignment operator '=' has overruled the rule 'lock’.

Rule Return Status:

Always 1

log — Rule

log creates a logarithmic time-varying output moving between a minimum and a maximum value.
The prototype of the rule is:
out log dur, [, direction [, scale_valuel, scale_value2]]

'out’ is the current value of the output
'dur' is the duration over which log creates the logarithmic time-varying value.

['direction'] - optional - is the starting direction:
0 (default) moves first from minimum to maximum
1 causes the first movement to be from maximum to minimum
NB 'Direction’ will be applied whichever order the values appear in scale_valuel and scale_value2.

'scale_valuel' and 'scale_value2' are the values to be supplied for the minimum and maximum. If these are omitted,
minimum is 0, maximum is 1.

Rule Return Status:

1 at the end of each logarithmic segment reached
0 on every other occasion.

log10 - Mathematical function

Gives the logarithm, base 10, of any number.
Example:

a = logie(b)
loop - Control-flow

Return control-flow to the start of the current procedure.

max — Rule

Place in the output cell the maximum value of a number of input arguments.
Example:
amax b, c, d, e

If a cumulative result - over many iterations of a performance loop - is required, include the output cell in the input cell list, as in the
following:

amax a, b, c, d, e

Rule Return Status:

1 under normal conditions
0 if the output cell is locked

mean - Rule

Place in the output cell the average, or mean, of a number of inputs arguments.
Example:
a mean b, c, d, e

The output cell 'a' stores the mean value of input cells b, c, d, e [....etc.].

Rule Return Status:

1 if the mean operation has been carried out successfully
0 if the output cell is locked

message - Rule
messagl - Rule

Output to the console a single message string in one of two formats.
Example (Format 1):

message "This will be printed to the console"
messagl "This will be printed only once"

These rules will output a message on the monitor during performance. For Format 1, the message to be displayed is placed within double
quotation marks, but the latter will not be shown. The following special characters may be used within the string to produce the desired
format:

\n (Newline)
\t (Tab)
\r (Return [to the beginning of the line, without Newline])

message will iterate the message as many times as it is called.
messag1 will print the message only the first time it is called.

From Version 1.5, it is now possible to contain multiple expressions, including variables, in the same message. The overall format is << ...
, ... >>: string items separated with commas and placed within a container of double-chevrons.

Text including \n and \t is contained in double quotes in the usual way: "\n" and "\t", and "\nSome text" and "some text\n" continue to be
valid (i.e., newlines included in the same quotes as the text string).

Example (Format 2):

intvar = 60

floatvar = 261.63

messagl << "\nINTEGER VARIABLE: ", int2string(intvar), "\t", "FLOAT VARIABLE: ", num2string{floatvar), "\n\n" >>
which displays:

INTEGER VARIABLE: 60 FLOAT VARIABLE: 261.63 (along with the specified tabs and newlines).

Rule Return Status:

message Always 1
messagl 1 when the message has just been printed to the console, 0 thereafter.

midichord - Rule
This rule outputs a chord to the designated MIDI channel. Its prototype is:

midichord chan, CHORD, vel, dur [, num_notes [, arp]]

‘chan' is the MIDI channel [0 - 15] on which the chord will be played
'CHORD' is the name of the TABLE which contains the notes of the chord
'vel' is the velocity of the notes, and

'dur' the duration of the chord

The number of notes can be altered by designating 'numnotes' - the default is 1.

'arp' is a flag to determine whether the chord should be arpeggiated:
1 = arpegdgiate (over dur / num_notes)
0 = no arpeggiation

NB If the user needs to change the direction of arpeggiation, then a sort on the pitch table may be used prior to this rule.

Rule Return Status:

Positive number of notes immediately after launch
Negative number of notes thereafter, until dur has elapsed

midiecho - Rule

Output immediately (echo) a MIDI event. There are only three input parameters: Channel [0 - 15], MIDI note and Velocity.
Example:
midiecho 0, 60, 80

This will output middle 'C' on MIDI Channel 0 (i.e., synthesizer Channel 1!). Note that no duration value is given, so it is up to the user to
turn off the note after the required duration by a matching command at some later time, e.g.

midiecho @, 60, @

The rule may be most useful when immediately responding to a midiin message, as in the following example:

start()

c, n, v midiin
midiecho ¢, n, v
loop

In this case the duration precisely matches that of the performed midiin rule. When you wish to output MIDI notes of a score-specified
duration, use midiout (see below).

Rule Return Status:

Always 1

midiin — Rule

If MIDI input data is available, midiin will collect it and store it in its output cells, of which there are three. The first is the MIDI Channel
(0 to 15), the second and third differ according to the returned event type.

Example:

channel, datal, data2 midiin
Rule Return Status:

MIDIIN Data

0 |No MIDI data available
1 |[Note Event: datal = pitch data2 = velocity
2 || Pitchbend Event: datal = msb(low-res) data2 = Isb(hi-res)
3 ||Aftertouch Event: datal = channel pressure||data2 = undefined - ignore
4 | Controller Event: datal = controller no data2 = value (msb)
Notes:
PITCHBEND:

the value can be 7-bit (lo-res) or 14-bit (hi-res)

* lo-resrange: 0 127 - centre (no-bend) = 64
e hi-res range: 0 - 16383 - centre(no-bend) = 8192

CONTROLLER:
only the lo-res (8-bit) value is returned

» The second data byte for 14-bit hi-res controllers is dropped.

« For switches, ON = 127, OFF = 0

» Note that controller information may be instrument-specific - refer to the MIDI specification for information on controller
numbers and messages.

midiout — Rule

Output a MIDI message.
Example:

midiout chan, note, vel, dur [, num_notes]
The input arguments are:

'chan' is the Channel number (0 15)

'note' is the MIDI note number (0 127)

'vel' is velocity (0 - 127) (i.e., loudness)

'dur' is the duration (in seconds)

[optional:]
'num_notes' is the number of notes to be output simultaneously - the default is 1.

If a rest is to be specified, then the MIDI note number (the value of the second input argument) should be made negative.

If fewer than 'num_notes' notes caused by this midiout rule are playing when the rule is executed, then a new note specified by 'chan’,
'note’, 'vel' and 'dur’ is started, and the return status is the number of notes now playing. Otherwise there are at least 'num_notes'
already playing and so the rule does not start a new note; the return status is minus the number of notes currently playing.

Thus
midiout @, 65, 100, 1.5
will output one note event each time it is executed and the previous note has terminated.
midiout @, note, 100, dur, 3
will keep three notes playing. Whenever a note finishes a new note will be added, using the current values of 'note' and 'dur'.

Any of the first four input parameters may be tables, in which case the first 'num_notes' table elements are used as the parameters to
output 'num_notes' events.

Rule Return Status:

If the rule has succeeded in outputting any notes, the return status is the number of notes currently playing.
Otherwise the return status is minus the number of notes currently playing.

NB Executing the rule with 'num_notes' equal to zero returns minus the number of notes currently playing; a new note will never be
launched in this event.

midiset - Rule
This rule may be used to set instruments to specific MIDI channels before performance. It may also be used to re-set instruments during
performance if required. There are two input parameters: Channel number (0 15) and Instrument number (0 - 127).
Example:
midiset @, 54

midiset 1, 63

Rule Return Status:

Always 1
min — Rule

Output is the minimum value of up to nine input cells.
Example:
amin b, c, d, e

If a cumulative result - over many iterations of a performance loop - is required, include the output cell in the input cell list, as in the
following:

a min a, b, c, d, e

Rule Return Status:

1 if the rule has been correctly applied
0 if the rule has failed (because the output cell is locked).

mouse - Rule

Prototype:
X, y mouse [scalel, scale2, scale3, scale4]

Output Cell 'x': Mouse 'x' coordinate
Output Cell 'y': Mouse 'y' coordinate

Gives two outputs, which are normalised screen coordinates of the mouse position (though on Atari the mouse cursor will be invisible!). If
there are no input parameters, then the outputs are scaled between 0 and 1. If there are input arguments, then these will scale the 'x'
and 'y' values accordingly:

'scalel': Scale Value when mouse position is furthest left
'scale2': Scale Value when mouse position is furthest right
'scale3': Scale Value when mouse position is lowest
'scale4': Scale Value when mouse position is highest

Examples:
X, Y mouse
probe X, Yy
X, Y mouse 36, 96, -5.0, 5.0
probe X, Yy

Cell 'x" will represent the horizontal location of the mouse, and 'y' will represent its vertical location. In the first example, a value lying
between 0 and 1 will result in 'x' and 'y'. In the second example 'x' will lie between 36.0 and 96.0, 'y' between -5.0 and +5.0.

Rule Return Status:

Always 1

mult - Rule

Place in an output cell the result of multiplying the values of any number of input cells.
Example:
a mult b, ¢, d
The example given is equivalent to the equation
a=b*c*d
If output cell 'a' is unlocked, then its value will become the result of multiplying b, c and d. If it is locked, then each of the unlocked input

cells is re-evaluated. If all cells are locked, then the rule return status records 1 or 0, depending on whether the two sides of the equation
balance or not.

Rule Return Status:

1 if both sides of the opname are equal
0 if the mult operation has failed (because the output cell is locked)

mult_table - Rule

Multiply each value in a table by its corresponding index value in a second table, and places the result in the output table. Example:
A mult_table B, C

If the table sizes are unequal, then operations to the size of the smallest table only will occur.

Rule Return Status:

Always 1

natlog - Mathematical function

Gives the logarithm, base e, of any number, where 'e' = 2.718281828....
Example:

a = natlog(b)
num2string — Type-conversion Function

Converts a floating-point number to a string.
Examples:

num2string(6.53)
int2string(float_variable)

The function enables an floating-point value to be displayed by message / messag1 or stored by storstr, using their second format in
which one or more strings are enclosed within double-chevrons << >>. (See message or storstr for an example.)

The converted string cannot be assigned to a variable or an element of a string table. Thus the following will give syntax errors:

a = num2string(6.53)
'STRTABLE[@] = num2string(6.53)

offset_table - Rule

Offset the contents of a table by a value, and write to an output table.
Examples:

A offset_table B, -1.0
A offset_table B, ¢

In these cases, each value in table B is offset, by the constant -1.0 and the current value of cell 'c' respectively, to produce the
corresponding value in table 'A'.
If the table sizes are unequal, then operations to the size of the smallest table only will occur.

Rule Return Status:

Always 1

perm - Rule

Randomly, or by step or skip, permute the contents of a one-dimensional input table.
Examples:

perm A
will permute the contents of table A.

perm A, 1

will permute table A by one step (ie two values in the table will be swapped). Successive calls with the same step value of 1 will cycle
through all possible permutations of the table and a particular order will not repeat until all permutations have been iterated. The number
of permutations is dependent upon the table size. The following gives the number of permutations for table sizes up to 8.

Permutations per Table Size
Table Size Number of permutations
2 2

6

24

120

720
5040
8 40320

NO U bW

As the number of permutations increases according to the factorial of the table size (n!), the use of step permutation with larger table
sizes is not recommended. This stricture does not apply to random permutations.

perm A, skip

will permute table A by 'skip' steps. If skip is 2, every other step permutation will result, and the permutation cycle will be completed in
half the number of steps. If 'skip' is otherwise a factor of the table size, the cycle will be correspondingly reduced. If 'skip' is a prime
number not otherwise a factor of the table-size factorial, then an alternative path through the complete cycle of permutations will result.
If 'skip' is negative, then the permutation cycle will be traversed 'backwards' - ie, with a table size of 4, perm A, -1 is equivalent to perm
A, 23.

For reference, the following lists in four columns the size-4 table indices of a complete permutation cycle with a stepsize of 1:

N
w
N

DADADDADUWWWWWWNNNNNNRERFE -
WWNNRFRFEFRARAMNNRERR,RRARWWHERE,ARWWN
NHFWHWNNFHFAMRIANWHARDNWWNDAND
PFNFRWONWREFNFEFANDAMR,WHRPWDANWNDPDW

Rule Return Status:

Always 1

pitchbend - Rule

Send a MIDI pitchbend message. There are two input parameters, containing the Channel (0-15) and pitchbend value respectively.

Bear in mind that the pitchbend range is normally set on the synthesizer itself. If this is set to one semitone, then the following will set
notes on channel 4 to be a quarter-tone sharp:

pitchbend 3, 96

Rule Return Status

Always 1
pop — Rule

Fractal algorithm which employs an output cell and an input value. Example rule-line:
a pop r

This algorithm is commonly referred to as the 'population' equation, from which the opname gets its name. It can be expressed:
aext - ok 5 % (1.0 - a)

In this implementation of the algorithm, if the input cell 'a' happens to be larger than 1.0, then the reciprocal of this value is first

substituted before the re-evaluation of the cell 'a'. As the value 'r' (normally a constant) is allowed to approach 4.0, the output results in
more 'chaotic' behaviour. This value is not limited, so care should be taken by the user.

Rule Return Status:

1 if the algorithm has been successfully applied
0 if the output cell has been locked

power — Mathematical Function

Power function. Example:
a = power(b, c)
Output 'a' is 'b' to the power of 'c'. To square a value, use:

a = power(a, 2)
print - Rule

Print to the console the input argument. There are optional formatting fields.
print x [, formatl, format2]

x' is the cell whose contents are to be printed.

'formatl' is the total number of screen characters to be taken in printing the value.
format2' is the number of decimal places to be printed.

The value is rounded to the last digit.

If 'formatl' and 'format2' are omitted, the rule defaults to 6 for formatl and 2 for format2.
If 'format2' is given the value 0, then the number will be displayed as an integer.

In the following example, the cell 'x' has been initialised to 2.157042.

PRINT format options

Examples: | Result:

print x 2.16
print x, 4, 1 |[2.2

print x, 6, 2 ||2.16
print x, 8, 3 |[2.157
print x, 10,4 |(2.1570
print x, 10,5 (2.15704
print x, 10,6 | 2.157042

Note that no carriage return or newline characters are output, so if the user wishes to incorporate line formatting, this must be done with
message, e.g.

message "\n"
after print calls.

The print rule does not take a string parameter. Use message / messag1 for this instead.

Rule Return Status:

Always 1

probe - Rule
probi - Rule
Display the input arguments on the console. These rules are designed to show lists of cell values or arguments. Up to 10 can be displayed
on an 80-character window, each pair separated by a tab. No newline is generated, so if the user wishes to see repeated calls to probe or
probi, a message rule of the type
message "\n"
must be used after the probe line.

probe displays values to 2 decimal places.
probi displays values as integers.

Example:
probe a, b, ¢
Rule Return Status:

Always 1

rand — Mathematical Function

Prototype:
a = rand()

The output is a random floating point number lying between 0 and 1

random - Mathematical Function

Prototype:
a = random(p, q)

The output is a random floating point number lying between the input arguments ('p' and 'q' in the prototype above).

return - Control-flow
Without a label, this means return to the last procedure. With a label, it means 'search for the most recent call with that label, and return
to it. Example:
return saturn

means return to the latest call with the label 'saturn'. Note, therefore, that more than one call can refer to the same label the latest one
is always used used, so there is no ambiguity.

round - Mathematical Function

Return the nearest rounded integer value of a number. Examples:
X = round(77.35)
will assign the value 77.00 to x, and

55.2
round(a)

a
b
will assign the value 55.0 to b.

scale_table — Rule

Scale each cell in a table by a constant value to produce an output table. Examples:

A scale_table B, 3.3
A scale_table B, c

In these cases, each value in table 'B' is multiplied by 3.3 and 'c' respectively to produce the output values in table 'A'.

Note - this rule does not apply to string tables.

Rule Return Status:

Always 1

schedule - Rule

Schedule a MIDI event for later performance. Example:
schedule channel, pitch, velocity, duration, delay

The scheduled event will occur 'delay' seconds later.

Rule Return Status:

Number of events scheduled for future performance.

seg - Rule

Create a linear time-varying output between values supplied by the user.
The prototype of the rule is:
out seg dur, valuel, value2
'out’ is the current value of the output
'dur' is the duration over which seg creates the linear time-varying value.
'valuel' and 'value2' are the limits of the linear segment.

NB Contrast this rule with lin, which moves back and forth between minimum and maximum values.

Rule Return Status:

1 when seg is first called, and thereafter when the end of each linear segment has been reached.
0 on every other occasion.

shift — Rule

Shift contents of a one-dimensional table one place to the left [or right].
Prototype:
shift A [, direction]

If 'direction' is missing or is set to zero, then the contents of the input table are moved one place to the right, and the value of the last
cell moves to the first. If 'direction' is non-zero, then the contents of the table are moved one place to the left, and the contents of the
first cell gets moved to the last.

Rule Return Status:

Always 1

showargs - Rule

Show (within a script) arguments invoked on the commandline.
Prototype:
showargs args(1)

The prototype will show the first argument string (after the script name) on the commandline.
If the script is named 'argstr.tv', and invoked with

tv argstr data.txt <RETURN>

then the prototype script line above will display
data.txt

Script example:

// ‘'strarg.tv' - Show commandline string arguments
start()
{

message "Args(1l) is
showargs args(1)
message "\nArgs(2) is
showargs args(2)
message "\nArgs(3) is
showargs args(3)
message "\nArgs(4) is
showargs args(4)

}

If this is invoked on the commandline with

tv strarg data.txt Tuesday 6.37 Thursday <RETURN>
then the output will be:

Args(1) is data.txt

Args(2) is Tuesday

Args(3) is 6.37

Args(4) is Thursday

Note that the number in string argument(3) is shown exactly as it appeared, as a string.
Numbers can, however, also be displayed with 'print', as

print arg(3), 4, 2
in this case.

Rule Return Status:

None

sine — Mathematical Function

Give the sine of a value in radians; the output will thus always be a value between -1.0 and +1.0.

Examples:
a = sine(2.17)
a = sine(b)

Places the sine of the input cell in cell 'a'.

The following is a complete rule-file which will demonstrate sine.

// Demonstrate sine function.

start()
{
pi2 = 6.28318530717958647692
while(1) {
a sum a, 0.001

b = sine(a)
probe a, b
a %= pi2

sort — Rule

Sort a table into ascending or descending order.

Prototype:
sort AAA [, sort_flag]

If sort_flag is absent or is equal to zero, then the input table is sorted into ascending order. If sort_flag is non-zero, then the table is

sorted into descending order.
NOTE: Currently only one-dimensional tables are supported with this rule.

Rule Return Status:
Always 1

sqrt — Mathematical Function

Give the square root of a value. Example:
a = sqrt(b)

Places the square root of cell 'b' into cell 'a'.

store_digits — Rule
store — Rule

storf — Rule

stori — Rule
storefile = Rule
storstr — Rule

It is possible to store in a file values generated during the course of a performance. This enables, for example, re-runs of performances
generated in real-time from statistical data.

The name of the storefile must be given in the form:
storefile "params"
If the file named already exists, then it will be overwritten.

The opname store has identical parameters to that of probe, and permits cell-values to be stored as floating point values to two decimal
places in a single line of text in storefile. stori will store these values as integers, and storstr allows an ASCII string to be placed in the
storefile.

The opnames store, stori and storstr are invoked thus:

store varl, var2, var3[etc]
stori varli, var2, var3 [etc]
storstr "One string in quotation marks"

The following may be included within the quotation marks of storstr, for formatting purposes:

\n (Newline)
\t (Tab)

Multiple Output Files

From Version 1.33, it is possible to create more than one output file simultaneously. All files subsequent to the first are declared as
follows:

storefile n filename
where n is an integer identifier (e.g. 1)

In the script, store and stori will not work with these integer-identified storefiles. Instead, the storage opname storf ('storefloat') should
be used. With this opname it is possible to select in advance how many decimal places will be included in the storage, with the declaration

store_digits 4

Note that this is a global declaration - i.e., all variables stored with storf will have four decimal places.
If you wish to store integers with storf, simply declare 'store_digits 0'.

Storstr does work with these files, however: simply add the integer identifier after the opcode 'storstr':
storestr 1 "sometext"
The following is a complete script which demonstrates writing multiple output files:

// File 'stortest.tv’
start()
{
storefile "pitchesA.txt"
storefile 1 "pitchesB.txt"
storefile 2 "pitchesC.txt"
store_digits @

storstr "// PitchesA.txt\n"
for(i=0; i<10; i+=1) {
pitch = int(random(60, 73))
stori pitch
storstr "\t"

storstr "\n"

storstr 1 "// PitchesB.txt\n"
for(i=0; i<12; i+=1) {
pitch = int(random(48, 59))
storf 1, pitch
storstr 1 "\t"

storstr 1 "\n"

storstr 2 "// PitchesC.txt\n"
for(i=0; i<24; i+=1) {
pitch = int(random(72, 97))
storf 2, pitch
storstr 2 "\t"

storstr 2 "\n"

Multiple expressions in storstr

From Version 1.5, it is possible to contain multiple expressions, including variables, in the same store-string. For CDP users, this makes it
possible to write command-lines and mixfiles, for instance.

The overall format is the same as Format 2 used in message / messagl, namely string items separated with commas and placed within a
container of double-chevrons: << ..., ... >>.

Text including \n and \t is contained in double quotes in the usual way: "\n" and "\t", and "\nSome text" and "some text\n" continue to be
valid (i.e., newlines included in the same quotes as the text string).

Storstr example (Format 2):

intvar = 1
storestr << "\nSoundfile ", int2string{intvar), "\t", 'SOUNDFILES[@], "\n\n" >>

For a single string-table cell, the format is not needed, as it is already a string: storstr 'SOUNDFILES[0] is acceptable.

Rule Return Status:

store, storf and stori - Always 1
storefile, storstr and store_digits - None

subst — Rule

Place in an output table values drawn statistically from either of two input tables.
Prototype:
C subst A, B, fac
'fac' is a statistical substitution index factor, whose value lies between 0 and 1.
When 'fac' is 0, table 'C' copies table 'A'.
When 'fac' is 1, table 'C' copies table 'B'.
When 'fac’ is some value between 0 and 1, each value of table 'C' is drawn from table 'A' or 'B' depending on the value of the

factor. Since the choice is made statistically, repeated calls to subst even with the same substitution index is likely to produce
a different output table.

Rule Return Status:

Always 1

sum - Rule

Sum in the output cell the input arguments.
Example:
asumb, c, d, e,

If the output cell is unlocked, then cell 'a’ will contain the sum of cells 'b' to 'f'. If 'a' is locked, then those cells 'b' to 'f' which are unlocked
will be incremented (or decremented) equally to satisfy the equation.

a=b+c+d+e+f
If all cells are locked, then the rule return status will be either 1 or 0 depending whether the equation is satisfied.
sum may be used to increment or decrement a cell, by naming it as both input and output, as:

a sum a, -0.01

Rule Return Status:

1 if both sides of the opname sum are equal
0 if the output cell is locked and as a result the equation cannot be satisfied.

sum_table - Rule

This rule sums successive values in two tables to produce corresponding values in the output table. Example:
A sum_table B, C

In this case successive values in table 'B' are added to successive values in table 'C' to produce the successive values in table 'A '. If the
tables are of unequal size, then only the minimum-size table values will result.

Note - this rule does not apply to string tables.

Rule Return Status:

Always 1

swap - Rule

Swap the values of two cells. Cells within tables may be swapped. Examples:

swap a, b // Values in cells 'a' & 'b' are swapped
swap a, D[5] // Values in 'a' and D[5] are swapped
swap D[@], D[7] // Values in D[0] and D[7] are swapped

If a cell is locked, then no swap will occur.

Rule Return Status:

1 if the swap has occurred
0 if no swap has occurred

switchon/case - Control-flow

Conditionally branch to alternate code segments.
Example:
switchon a {

case 0: {
call rotate()

case 1: {
call tumble()
}
case 2: {
call undulate()
}
case 3: {
call veer()
}
default: {
dum = © // do nothing!
}

system - System call

Creates a system call to an external program.

The program may be one normally accessible to the commandline interface (e.g. 'dir'), or it may be any program within the current path.
Redirection is supported.

From Version 1.5, there are two formats available for the command.
Format 1: the entire command is enclosed within inverted commas.
Examples:

system "dir >dirlist.txt"
// Writes the current directory listing into a file 'dirlist.txt'.
system "dirsf C:\Sounds"
// Lists the soundfiles in the named directory.
system "sndinfo len C:\Sounds\rock.wav"
// Writes the length of the named soundfile to the console.
// In the latter examples the path to the CDP executables
// must be made known to the operating system.

Format 2 (from Version 1.5): multiple strings are placed within double-chevrons << >>, as also used in message / messagel and
storstr.
Example:

mode = 2
paramup = 12
system << "modify speed ", int2string(mode), " ", 'SFILES[@], " ", 'SFILES[1], " ", int2string(paramup) >>

This assembles and runs the CDP commandline: "modify speed 2 infile.wav outfile.wav 12" (where 'SFILES[0] and 'SFILES[1] were
previously read from a textfile). The advantages of being able to run CDP commands from within Tabula Vigilans cannot be over-stated.

Note that when system is invoked, the entire control is passed to the called process. Any timing features of the script are interrupted
until the called process returns control to TV.

table - Initialisation Rule

Create a (numerical) table of given dimensions and sizes. Examples:
table SOME[8] // 1 dimension, 8 cells
table MANY[20][2] // 2 dimensions, 20 x 2
table MORE[3][3][3] // 3 dimensions, 3 x3 x 3

This initialisation rule occurs at the head of the script, outside any procedure. On initialisation, each table element or cell contains the
value zero.

Typically, a loop might be used to fill the table. The [20] in the example above (table MANY) is the number of items in the table, accessed
via the loop count. The [2] is the number of dimensions in the table, i.e., 2 columns. Thus we would index [k][0] for the 1st column and
[k][1] for the 2nd column.

It is also possible to create a table without a fixed size. The table is declared with no number within the brackets and its size is
determined when it is filled from a file, using fill_table:

table NEWTABLE[]
NEWTABLE fill_table "tabledata.txt"

However, multi-dimension tables must have their dimensions and sizes declared, as shown above.

String tables

String tables are identified by prefixing the character ' to the table name:

table 'SNDSTABLE[8] or
table 'SNDSTABLE[] [followed by a fill_table statement]

Multi-dimension string tables are not supported.

time - Rule

Set a real-time counter. Example:
t time

This places system time in cell 't', initialised to zero. On subsequent calls to time in the performance loop, the value of the cell is
incremented in pace with real-time.

By processing this value, warped time may be created, e.g.:

start()

{
a sum a, 0.0005
t time
warp mult , a

t
probe t, warp
if(warp >= 100) {

end
}

loop
}

Rule Return Status:

Always 1

tangent - Mathematical Function

The tangent function.
Example:
a = tangent(b)

Cell 'a' will store the tangent of the value in cell 'b'.

trigger — Rule

Set a trigger cell.
Prototype:
trl trigger timevalue
Result: 'trl' is made positive each time 'timevalue' has elapsed
Example:
a trigger 0.5

if(a > @) {
pch sum pch, interval
}

Rule Return Status:

1 if trigger is operating normally
0 if the output cell is locked.

try — Mathematical Function

try is a special mathematical function which permits the user to ascertain the return status of a rule. It therefore takes the form
try(rule)

where rule is the complete rule-line used in a Tabula Vigilans script. The meaning of the return status is given at the end of each Manual
entry for a Rule. Typically the return status means 1 for 'success' or 'normal operation' and 0 means 'failure' or 'abnormal operation' - but
there are many exceptions and the user should check the Manual in cases of doubt. It is also important to realise that try applies only to
rules — not to mathematical functions or to control-flow keywords.

It is possible to set a cell to store the result of try, as in:
x = try(midiout @, note, 96, dur, 3)

and subsequently display it, as:
probi x

Or in an even more direct form:

probi try(midiout @, note, 96, dur, 3)

unlock - Rule

Unlocks previously locked input cells. (See lock, above.) Example:

unlock a, b, c

Rule Return Status:

Always 0

wait — Rule

Cause a complete stay of execution for the duration of the input cell, as in:
wait 2.3
Everything will be on hold for 2.3 seconds.

NB Since the normal Tabula Vigilans performance of a script is completely stopped by wait, this rule should be used with care. The only
exception to the halt is that MIDI events already started and previously scheduled to terminate (as in midiout and midichord) will
terminate correctly after their elapsed duration.

Rule Return Status:

Always 1

while — Control-Flow

Set up a locally-executing loop dependent upon the evaluation of a test placed inside parentheses.

The form of the while clause is:

while(some condition is TRUE) {
execute this block of rules

[and if the condition is not true, jump over the block and come here]
::::[etc.]
The following
while(1) {
)
will always execute, because 1 is always true.

The test condition is evaluated using the usual relational operators — see Section 3.3. Examples:

while(x < 100) {

3

while(y > z & a == 0) {
}

xad - Rule
xar — Rule

Prototypes:

B xad A // eXtract Adjacent Differences
B xar A // eXtract Adjacent Ratios

These rules extract the differences (xad) or ratios (xar) between adjacent values in the input table, and write them to the output table,
optimally wrapping beginning to end. If the tables are of different sizes, the output table will be either truncated or will contain zeros.

Examples:
Suppose we have a one dimensional input table A[4] as follows:
A: [3.31] [2.76] [7.13] [9.25]

then B xad A will place in output table B[4]:
B: [-0.55] [4.37] [2.12] [-5.94]

and € xar A will place in output table C[4]:
C: [0.83] [2.58] [1.30] [0.36]

Rule Return Status:

xad - Always 1
xar - Always 1

Demonstration Scripts

NB These demonstration scripts illustrate aspects of control-flow operations rather than musical uses of Tabula Vigilans. For the latter, see Richard
Orton Principles of Algorithmic Musical Composition (forthcoming), or the disk of Tabula Vigilans script examples distributed with the CDP release.

LI111017T17070007 07717771777 777777771117177717171117771171117177
// An example Tabula Vigilans script showing call() with
// parameters and break with and without labels (in this case
// 'fred' and 'jane')
[17711171171777171171777171111777777111717771111117777111117177
start()
{

message "Starting...\n"

for fred (f = 0; f < 10; f+=1) {

call subl(f)
}

message "Fred is finished."
while jane (j++ < 5) {

call sub2(j)
}

message "\nJane is finished."
for(k = @; k < 10000; k+=1) {
if(k == 273) {
message "\nKey number is"
probi k
message "\n\tIt's time to end....\n"
break

subl(x)
{
if(x < 5) {
message "This is Fred's time number"
probi x
message "\n"

else {
break fred

}
sub2(y)

if(y »>= 3) {
break jane
}

else {

}

message "\nJane is here!"

IITTIEITITIITTI7 1071770771 777771771717177177171711771111711177
//

// An example Tabula Vigilans script showing call() with

// parameters and continue with and without labels

// ('fred' and 'jane')

//
[17711177777711177177717111777777177177711117177771111111711177
start()

message "Starting...\n"
for fred (i = 1; i < 10; i+=1) {
if(i > 5) {
message "\nDone it"

else {
call subi1(i)
}
¥

message "\nFred is finished."
while jane (j++ < 5) {

call sub2(j)
}

message "\nJane is finished."
for(k = @; k < 10000; k+=1) {
if(k == 273) {
message "\nKey number is"
probi k++
message "\n\tIt's time to end....\n"
continue

¥
if(k == 317) {
message "Not quite: Key number now"

probi k
message "\nWe'll finish now!"
break
}
}
end
}
subl(x)
if(x < 6) {
message "This is Fred's time number"
probi x
message "\n"
}
else {
continue fred
}
}
sub2(y)
{
if(y »>= 3) {
continue jane
}
else {
message "\nJane is here!"
¥
}

// File "tabl", containing a set of 8 midinotes:
62 65 70 71 72 63 66 67

// File "tab2", containing a set of 9 midinotes:
71 72 63 66 67 64 68 69 73

///
// Tabula Vigilans script ' compare tv"

// demonstrating the use of 'compare’
[1171717777771071777777777777777771771777771711717771711117717177
table AAA[8]

table BBB[9]

table CCC[5]

start()

AAA fill_table “tab1"

BBB fill_table "tab2"

sect =

CCC compare AAA, BBB, ©
message “"Section 1: Table A\n"

while(1) {
if(sect == 1) {
if(xx > 0) {

a = AAA[andx++]

}
if(count > 24) {
count = @
sect = 2
message "Section 2: Table B\n"
wait 2.0
}

}
if(sect == 2) {
if(xx > @) {
= BBB[bndx++]

}
if(count >= 27) {
count = @
sect = 3
message "Section 3: Table C: Intersection of Table A & B\n"
wait 2.0
}

}
if(sect == 3) {
if(xx > @) {
a = CCC[cndx++]
}
if(count >= 20) {
end
}
}

xx = try(midiout @, a, 64, 0.2, 1)
if(xx > @) {
count += 1

LTI 17707170777 7777777171771111771171717
1/

// Demonstration Tabula Vigilans script for 'copy’

//
[I770011777771717771777711711717171711717771711111777
start()
{
d=7.73
message "At start: a, b, ¢, d are \t"
probe a, b, c, d
message "\nNow copying value of d into a, b, c:"
a, b, ¢ copy d
message "\nNow, cells a, b, c, d are \t"
probe a, b, c, d
message "\n"
}

IIITTIIL0ITIT17 77117077 777777117711711117711117117
/!

// Demonstration Tabula Vigilans
// script for table copying

//
[11711177177711171177711111171771117111117171111111117
table TABLE1[4]

table TABLE2[4]

1--

-->
start()

TABLEL1 fill_table "input1"

message "Input Table is:\n"

probe TABLE1[0], TABLE1[1], TABLE1[2], TABLE1[3]
message "\n"

TABLE2 copy_table TABLE1

TABLE1[0] = 77

TABLE1[1] = 78

TABLE1[2] = 79

TABLE1[3] = 80

message "Output (copied) Table is:\n"

probe TABLE2[0], TABLE2[1], TABLE2[2], TABLE2[3]

[ITTITIITII 1101 17771777717111711717111177
//

// Demonstration Tabula Vigilans script:

// use of dimsize

//

1117171777777 7777777777777777777777177171177
table TAB[10][5]

start()

message "dimensions(TAB) = \t"
probi dimensions(TAB)
message "\n"

TAB1 copy TAB

message "dimensions(TAB1) = \t"
probi dimensions(TAB1)
message "\n"

call x(TAB)

x(T)
{

message "dimensions(T) = \t"
probi dimensions(T)

message "\n"

message "Size of dimension 1 is\t"
probi dimsize(T, 1)

message "\n"

message "Size of dimension 2 is\t"
probi dimsize(T, 2)

message "\n"

T[O][O0] copy 11.23
T[2][1] copy 57.82
T[8]1[2] copy 93.77

for(@=0;a<10;a+=1){
T[al[a+1] copy a*a

¥

message "Table initialized\n"

for(@a=0;a<10;a+=1){
call prrow(T, a)

prrow(T, row)

for(cnt = 0; cnt < dimsize(T, 2); cnt += 1) {
print T[row][cnt]
message "\t"

}

message "\n"

IIIITTI007777777707717717717771717711177717117111117171111771
// argctest.tv (AE - @1 May 2023)

// Command line: tv argctest.tv 60 67 60 90 "midipchlist.txt"
// Leave out one of the numbers to activate the argc message
// The number of commandline arguments found can be saved to a
// variable.

// The argument count begins after the call to tv, which is

// actually arg(®e)
[I777117117777710777777777771177177711117177777711111771111117

table PCH[]
start()
if(init == @) {
call initialise()

}

messagl "\nThe contents of the first four arguments are:\n"
probi pchlo, pchhi, vello, velhi

messagl "\nThe contents of the MIDI pitches file are:\n"
for(i = ©; i < dimsize(PCH, 1); i += 1) {
probi PCH[i]
message "\n"

}
usage()

message <<"USAGE: tvl5 60 67 60 90 midipchlist.txt", "\t", "(5 arguments after 'tv')\n" >>
}

initialise()

message "Command line with 5 arguments\n"
if(argc() < 5) { //test by leaving out an argument
correctnumargs = 5
message "\nInsufficient arguments on command line\n"
message << "\nYou should have ", int2string(correctnumargs), " arguments on the command line, otherwise the script will end or, better, show the U

call usage()

end
}
pchlo = arg(l)
pchhi = arg(2)
vello = arg(3)
velhi = arg(4)

PCH fill_table args(5) //note 'args' for a textfile containing
// a list of pitches (numbers)
// -- or other data
//The '5' indicates it is the 5th argument.

init = 1

Last updated 17 Sep 2023; revisions: A. Endrich and R. Fraser
Text last updated: 28 Sep 2023 for vn. 1.5f
© 1994-2012, Richard Orton,Willoughby on the Wolds & Composers' Desktop Project

