

CDP TEXTURE Functions

(with Command Line Usage)

Functions to make multi-event textures with
soundfiles

~ The Texture Pack contains batch and data files for all the examples ~
NB: – See Special Background Information

(Names in brackets mean that these are separate programs. The others are sub-modules of TEXTURE.)

SIMPLE
A texture of events shaped by random selections from parameter ranges, with one or more input
sounds; a Harmonic Field/Set may be used

GROUPED
A texture of separate event groups shaped by random selections from parameter ranges, with one or
more input sounds; a Harmonic Field/Set may be used

DECORATED/PREDECOR/POSTDECOR
A texture of 'decoration' events shaped by internal grouping parameters, selected at random from a
pitch range or from a Harmonic Field/Set and attached to an underlying 'line'; one or more input
sounds. [A Line with random-range-shaped Decorations, Harmonic Field/Set optional.]

MOTIFS/MOTIFSIN
A texture of fully defined motifs attached to pitches selected at random from a pitch range or from a
Harmonic Field/Set (MOTIFS: only first note of motif constrained, MOTIFSIN: all notes of motif
constrained); one or more input sounds. [A Motif, Harmonic Field-Set optional – no Line.]

ORNATE/PREORNATE/POSTORNATE
A texture of events with fully user-specified ornaments placed on a 'line', optionally with pitches
restricted to a Harmonic Field/Set; one or more input sounds. [A Line with fully defined Ornament,
Harmonic Field-Set optional.]

TIMED
A texture with events constrained to a rhythmic template and pitches selected at random from a pitch
range or a Harmonic Field/Set; one or more input sounds

TGROUPED
A texture with the onsets of separate internally shaped event groups constrained to a rhythmic
template, with pitches drawn from a pitch range or a Harmonic Field/Set; one or more input sounds

TMOTIFS/TMOTIFSIN
A texture with the onsets of fully user-specified motifs constrained to a rhythmic grid and attached to
pitches drawn from a pitch range or from a Harmonic Field/Set; one or more input sounds

Background Info:
Special background information for Texture

Also see (multi-channel):
[TEXMCHAN]

Create textures over a multi-channel frame
[NEWTEX]

Generate a texture of grains made from a source sound or sounds
[WRAPPAGE]

Granular reconstitution of one or more soundfiles over multi-channel space

Author's Note

This is an extraordinary program set devised and written by Trevor Wishart.
It enables you to build and shape multi-event textures of varying complexity
by semi-algorithmic mixing processes. My work on the CDP HTML Reference
Documentation took several months, spread out over 2 years, and was
followed by writing the supplementary Texture Workshop to provide a more
step-by-step introduction to the musical potential of the Texture programs.
There is also a section in the 12-Step Tutorial that summarises the key
musical possibilities of the TEXTURE programs. I hope you enjoy using them
as much as I do.

– Archer Endrich, May 2005.

file:///E:/CDP/DOCS/!PRINT/cgromc.htm#TEXMCHAN
file:///E:/CDP/DOCS/!PRINT/cgrogrns.htm#NEWTEX
file:///E:/CDP/DOCS/!PRINT/cgrogrns.htm#WRAPPAGE
file:///E:/CDP/DOCS/htmltuts/tut12step/tut12stp.htm#STEP11

Special Background Information for Texture

Given the complexity of these programs, you are recommended to take advantage of the Presets
in Soundshaper, or the Patches function in Sound Loom, or the batch file mechanism when using
command lines. All the relevant files are in the \txpack folder. Once set up, they can be varied
without too much difficulty.

The Texture Pack contains Sound Loom Patches, or batch and text file versions of all the
parameter settings used in the examples, along with the supporting node data and breakpoint
files. The batch files can be used with the CDP executables, as well as with the Sound Loom
batchfile mechanism – but it is easier to use the Presets / Patches. Soundshaper has presets
for all the Texture Pack examples. Readtxtu.txt summarises all the files in the Texture Pack so
you know what is what.

The Texture Pack focuses on pitch-oriented applications of the TEXTURE programs, as these
nicely demonstrate the many options available. Bear in mind, however:

There are many spatialisation possibilities. All the examples here scatter the output across
the stereo field. But it is possible to generate sound output at a specific location, as a
moving stream, as a gradually spreading event, and so on, using the spatial position and
spread parameters.

Motifs, and harmonic fields can be tuned to any scale or system you want. If you need 500
irregularly spaced notes per octave, that's fine. Fractional MIDI values can be used to
specify any tuning.

Textures can be as dense as you want, and the variation of density can be used to obscure
or unveil recognition of the source, the source pitch, and so on.

In the examples below, the pitches of motifs, ornaments and harmonic fields, specified in the
note data file, are taken from the standard 12-note tempered scale (by using whole number MIDI
values), but this is not essential. You may choose any tuning system you wish, simply by
using fractional MIDI values for the note specifications. Ornaments and the line they ornament
could be in different tuning systems. And you may define any number of notes (e.g. 500) within
an octave.

In neutral modes, no tuning system at all is imposed on the notes, which are taken from the
whole pitch continuum.

TOPICS:

Pitch Grouping Types
Special Parameters: gspace, contour and centring
The Notedata file

Pitch Grouping Types

'Ornaments' and 'Motifs' have user-specified pitch shapes (in the notedata file)
'Decorations' and 'Groups' are random assemblies of pitches
'Harmonic sets' use only the pitches specified
'Harmonic fields' duplicate the specified pitches in all octaves

The Special Parameters gspace, contour and centring

gspace – 5 options for the spatialisation of event-groups
0. – still
1. – scattered (default)
2. – towards texture centre
3. – away from centre
4. – follow texture motion (only if spatial position varies in time)
5. – contrary to texture motion (only if spatial position varies in time)

contour – 9 options for the amplitude contour of groups
0 – mixed (default)
1 – crescendo
2 – flat
3 – decrescendo
4 – crescendo or flat
5 – crescendo or decrescendo
6 – decrescendo or flat
7 – directed-to-event (in some cases only)
8 – directed-to-event or flat (in some cases only)

centring – 7 options for how the decoration pitches centre on decorated line pitches
0 – centred (default)
1 – above
2 – below
3 – centred and above
4 – centered and below
5 – above and below
6 – centred and above and below

In all cases except 0, the pitch range of decorations are shifted to tally with line pitch.

About the Note data file

Notedata is a textfile containing:

1. MIDI 'pitch', which may be the real or arbitrary pitch of EACH input sound, specified on the first line.
60=original pitch.

2. NOTELIST(S), where necessary (as below)

Each Notelist is specified as follows:

 #N
 time instr_no pitch amplitude duration
 time instr_no pitch amplitude duration
 time instr_no pitch amplitude duration
 time instr_no pitch amplitude duration
 etc.

N = the number of notes in this notelist, and is followed by N lines as above
time – the start time of that note in seconds
instr_no – CURRENTLY INACTIVE IN ALL CASES; to be either implemented or removed. It is
intended to provide a means of associating a specific note-event with a specified infile, but may
be overridden by other parameters. Always give '1' as the

instrument number until a future update changes this situation.
pitch – within the MIDI range of 1 to 127
amplitude – within the MIDI range of 1 to 127; this field is inactive except for motifs and
ornaments
duration – duration (sustain-time) of that note in seconds; this field is inactive except for motifs
and ornaments

In the following example, the 1st line provides the 'assumed' (i.e., possibly arbitrary) pitch level of the input
soundfile. If there is more than one input soundfile, a pitch level must be provided for each one, separated
by spaces. The 2nd line indicates how many notes are in the notelist, and then the following lines define
each note in turn. In the example file below, all the times in the note data file are given as zero. The timing
between events (and therefore the number of events) is in this case controlled by the packing parameter. All
durations (sustain-times) in the note data file are zero in this case, and the duration of any given note event
is selected at random from within the duration range in the command parameters. In this example events of
various durations are placed randomly on the lattice of a C-minor 7th chord. Durations must, however, be
specified in the note data file for motifs and ornaments. Durations are also referred to as 'sustain-
times' because they refer to the amount of time that the input soundfile is 'sustained': i.e., how much of it is
used. Each note event in the texture begins at the beginning of the input soundfile and continues – is
sustained – for the amount of time specified. This makes the nature of the attack portion of the input
soundfile particularly important when creating textures.

The note data file is a text file which may be written with a text editor, with an editing facility within a
graphic interface. There are newlines at the end of each line and spaces (or tabs) between the data items for
each note. The following illustrates the format of a typical note data file.

 60
 #4
 0 1 60 0 0
 0 1 63 0 0
 0 1 67 0 0
 0 1 70 0 0

Notelists represent in this order:

a. Notelist of notes in any timed, ornamented or decorated line in the texture (basic substructure
notelist)

b. Notelist of notes in any harmonic field(s) or harmonic set(s) specified (decoration field)
c. Notelist(s) of notes in any ornament(s) or motif(s) specified

Not all of these lists are used for the various TEXTURE functions, and the order may
vary. The note data files shown in each function are more specific regarding their
contents. Also see the Note Data File Chart and 2 additional reference charts for overviews
of key information. You can print these out (and laminate them) for easy reference. Also useful is
the Chart of Equivalent Pitch Notatations – a special version named notechpr.htm has been
created for printing neatly on two sheets, single or double-sided.

file:///E:/CDP/DOCS/!PRINT/ndfchart.htm
file:///E:/CDP/DOCS/!PRINT/txcharts.htm
file:///E:/CDP/DOCS/!PRINT/notechrt.htm

Also note:

a. Timed textures require a sequence of timed notes ...
Their pitches and timings will be used to define the 'line' (= nodal substructure) in ornamented
and decorated textures
Their timings ONLY will be used in timed, tmotifs and tmotifsin textures (Specify arbitrary
pitches).
Their durations may be used in certain options to specify durations of motif or ornament note-
event shapes.

b. For more than 1 harmonic field or harmonic set ...
Specify the 1st field with all notes at time 1
Specify the 2nd field with all notes at time 2
etc. ...

c. Times within motifs must increase (or remain the same during chords)

TEXTURE SIMPLE – A texture of events shaped by
random selections from parameter ranges, with one
or more input sounds; a Harmonic Field/Set may be
used

Usage

texture simple mode infile [infile2] outfile notedata outdur packing scatter tgrid
sndfirst sndlast mingain maxgain mindur maxdur minpich maxpich
[-aatten] [-pposition] [-sspread] [-rseed] [-w]

Modes

1 On a given harmonic field
2 On changing harmonic fields
3 On a given harmonic set
4 On changing harmonic sets
5 None (Neutral)

Parameters

infile – input soundfile to use as source material
infile2 ... – optional soundfile(s) to use as additional inputs
outfile – output soundfile
notedata – textfile, containing:

1. assumed MIDI 'pitch' of each input sound, specified on the 1st line. In Mode 5 this is all
that is needed. 60=original pitch.

2. In Modes 1 - 4 there is also a NOTELIST to define a Harmonic Field/Set, specified thus:
#N (where N is the number of pitches in the notelist).
This is followed by N lines in the format:
time (secs) infile_no pitch (MIDI) amp (MIDI) dur (secs)
Amp and dur are inactive.
Any times within the field must increase (or remain the same, during chords)

Form: MPV/–/–/– Form: MPV/HF-S/–/–

Mode 5 format Comments Modes 1-4 format Comments

60 MIDI pitch value(s) 60 MIDI pitch value(s)

 #N No. of lines to follow

 time instr pitch amp dur List of Harmonic Field/Set

outdur – minimum duration of the outfile
packing – (average) time in seconds between event onsets
scatter – randomisation in seconds of event onsets (Range: 0 to 10)
tgrid – minimum step in milliseconds or quantised timegrid (for group start times) (Range: 0 to
10000; Default: 0)
sndfirst, sndlast – first and last soundfiles to use from a list of soundfiles for input (Range: 1 to
the number of sounds). Note that this is a time-varying parameter:

Enter 1 for both sndfirst and sndlast to use just one input soundfile.
When you use more than one sound, the names of these input soundfiles are given to the
program. The note data file must provide a reference pitch level for each of these sounds.
If you just enter, e.g., 1 for sndfirst and 3 for sndlast, the program will select one of the
three input soundfiles at random for each event in the texture.
To specify when each soundfile is to be used in creating the output texture, a text file is
needed to provide a time sound_number pair of values, the numbers corresponding to the
order in which the soundfiles have been submitted to the program.
For one file at a time changing at different times in the output (the times given are as in
the output soundfile), use the same file for both sndfirst and sndlast, e.g.,

 sndfirst sndlast
 0.0 1 0.0 1
 10.0 2 10.0 2
 18.8 3 18.8 3

For a changing number of files, such as expanding the number of files being used at any
one time (illustrated below), use a lower number at a given time for sndfirst, and a higher
number at the same time (or an overlapping time) for sndlast.

 sndfirst sndlast
 0.0 1 0.0 1
 10.0 1 10.0 2
 18.8 1 18.8 3

Note that the rate at which each soundfile is employed will slow down as more are invoked
over the same time period.

mingain, maxgain – minimum and maximum level of input sounds (Range: 1 to 127; Default: 64
and 64)
mindur, maxdur – minimum and maximum duration of events in texture
minpich, maxpich – minimum and maximum pitch (MIDI note value)
-aatten – overall attenuation of the output
-pposition – centre of sound output image (Range: 0 to 1, where 0 is Left and 1 is Right;
Default: 0.5)
-sspread – spatial spread of texture events (Range: 0 to 1, where 1 is full spread)
-rseed – the same seed number will produce the same result on rerun (Default: 0, where 0 is
different result each time)
-w – always play whole input sound, ignoring duration values

Understanding the TEXTURE SIMPLE Process

Getting started
Please make sure you have gone through the background information before continuing.

This Reference Document for the TEXTURE suite contains numerous worked examples which you
can hear directly from this manual. They are stored in \txsnds. You can also go to the \txpack
folder, where you will find all the files you need run to create the sound examples yourselves.
There are two versions: one for the Command Line and Soundshaper environments and one for
the Sound Loom environment.

What you need from the txpack are the note data and breakpoint files, as well as the two source
sounds, horn.wav and marimba.wav, or source sounds of your choice. The parameter
information is stored in Presets supplied with Soundshaper and Patches supplied with Sound
Loom. In a Command Line environment, you can run the batch (.bat) files supplied in txpack.

Location of the source sounds and other files:

Soundshaper – In OPTIONS > SETTINGS go to File in the top left corner and open
txpack.cfg. This Will take you to \txpack, which contains the source sounds, note data
and other files needed to run the examples. Also load the Presets file Presets.dat, which
is the default file supplied with the Program).
Sound Loom – select txpack as your working directory, Grab everything and place the files
on the Workspace. Now use Choose Files to select the appropriate sooundfile(s) for
processing. The Patches go in the _cdpatch folder, and should be there already in your
distribution.
Command line environment – 'change directory' to \txpack and run the various batch
files, e.g., simplexs.bat for the TEXTURE SIMPLE examples.

The complete list of files is given in Readtxtu.txt. The list at the date of this file is as follows:

Note data files:

 ndfsiml.txt ndfsim2.txt
 ndfsim3a.txt ndfsim3b.txt
 ndfsim4a.txt ndfsim4b.txt
 ndfsim5.txt ndfsim6.txt
 ndfdec1.txt ndfdec2a.txt ndfdec2b.txt ndfdec3.txt
 ndfmot1.txt ndfmot2.txt ndfmot3.txt ndfmot4.txt
 ndforn1.txt ndforn2.txt ndforn3.txt ndforn4.txt ndforn5.txt
 ndftim1.txt ndftim12.txt ndftim3.txt
 ndftgr2.txt
 ndftmo1.txt ndftmo2.txt

Breakpoint files:

 packchng.brk simplpak.brk grppack.brk
 gprlo.brk gprhi.brk
 dm5gprhi.brk dx3gprhi.brk
 Names for extra breakpoint files for ORNATE examples,
 to make yourself. These are described in ORNATE section:
 oex3mulo.brk oex3muhi.brk
 oex3mulb.brk oex3muhb.brk
 oex3skip.brk oex3skpa.brk oex3skpb.brk

Please check your Soundshaper and/or Sound Loom reference manuals on handling Presets and
Patches. If you are a Sound Loom user, for your convenience, we also supply ctextusl.htm, a
version of this document which is Sound Loom specific, with all parameters as named in Sound
Loom. Also note that Sound Loom Version 5.6 and above can run batch files.

First example
Mode 5 is a good place to begin. In this Mode, the note data file contains only one value: the (real or
arbitrary) MIDI pitch of the input soundfile. There is no further data because there is no list of notes. All the
note events are generated from the information of the command parameters.

To get a feel for the 'lie of the land', we can run TEXTURE SIMPLE in Mode 5 with the following parameters
(ndfsim1.txt has only the number 60 in it). The infile is the horn.wav sound used in the GrainMill Tutorial (2.9
sec). The 'b' example has time varying packing, as defined in packchng.brk: 0 0.025
3 0.1
6 0.05
9 0.25
12 0.025

SIMPLE Examples 1a/b (Presets/Patches simplex1a and simplex1b):
outdur (12) packing (0.25) scatter (0) tgrid (0) sndfirst (1) sndlast (1) mingain (36) maxgain
(84) mindur (0.2) maxdur (1.5) minpich (60) maxpich (60) – in command line format:
texture simple 5 horn simplex1a ndfsim1.txt 12 0.25 0 0 1 1 36 84 0.2 1.5 60 60
texture simple 5 horn simplex1b ndfsim1.txt 12 packchng.txt 0 0 1 1 36 84 0.2 1.5 60 60

You will hear a regularly occuring randomised selection of mostly overlapping note events, some longer and
some shorter, repeating the pitch Middle C (randomly) in both channels – note the Left-Right movement
between speakers. Try making maxpich 61, and then 64. With maxpich still at 64, try reducing the packing to
0.025.

All the examples for TEXTURE SIMPLE can be made at once by running simplexs.bat
from the DOS prompt. The soundfiles produced can be deleted with simpldel.bat.

Now let's start to look more closely at the salient parameters:

packing determines the density of the texture by setting the time onsets of the note events. In the
above example, 0.25 sec sets 4 events per second, i.e., semiquavers at crotchet (quarter note) = 60).
These events will occur evenly, because both scatter and tgrid are set to zero.

mindur & maxdur set the range within which the duration of each note event will be randomly chosen.
If only one duration is wanted, set both of these to the same value.

minpich & maxpich set the range within which the pitch of each note event (in MIDI note values) will
be randomly chosen. If only one pitch is wanted, set both of these to the same value. Given a pitch
range greater than just one pitch, the program selects pitches according to a random function. NB: The
specification of MIDI pitch values is not limited to integers. Thus a pitch range of 60 60.75 will result in
microtonal detuning.

file:///E:/CDP/DOCS/!PRINT/txsnds/simplex1a.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/simplex1b.mp3

OK, now let's note and experiment carefully with the two additional timing parameters: scatter
and tgrid.

The onset timing can be somewhat randomised by utilising the scatter parameter. For
example, if in the above example scatter is set to 0.07 and tgrid is still 0, you will hear how
the previous evenness is somewhat displaced.
If you then set tgrid to 330ms (scatter still at 0.07), a quantisation grid of about a 3rd of a
second is set. In a 'snap to grid' fashion, this will draw the still somewhat randomised note
events towards these 3rd of a second 'grid lines'. Because quantisation sets a time grid,
when there are more events, they will tend to bunch at the grid points, some virtually
simultaneous such that they sound like one event.
If scatter is then set to 0 (with packing still at 0.25 and tgrid at 330, i.e., if the onset
randomisation factor is eliminated, the note events will much more regularly occur on/near
the 3rd of a second time grid points.

The following table summarises some basic combinations:

TEXTURE SIMPLE Mode 5 Examples

Running some changes on the initial example

outdur packing scatter tgrid Result

12 0.25 0 0 48 events will occur regularly on the ¼ second

12 0.25 0.07 0 48 event onsets will be displaced, becoming a little uneven
rhythmically

12 0.25 0.07 330
48 events somewhat irregularly placed will gather at the
3rd of a second quantisation time grid points – but some
will be doubled.

12 0.25 0 330 48 events will gather at the the 3rd of a second
quantisation time grid points

Some other generic illustrations

outdur packing scatter tgrid Result

12 1 0 500 12 events will occur on the second: quantisation is 'pulled'
to the 1 second 'boundary'

12 1 1 500 12 events on the second or half-second: e.g., 1, 2, 2.5, 4
etc.

12 1 0 2000
6 double events every 2 seconds:
packing demands 12 events:
tgrid forces them to a 2 sec grid

12 0.5 0 330 24 events will occur. They will be shifted to the 3rd of a
second grid.

12 0.1 0 330 The many events will group at the 3rd of a second grid.

12 0.1 0 150 The slighter quantisation here will reduce the bunching of
the previous example

You are recommended to experiment with TEXTURE SIMPLE Mode 5 for a while to see how easy
it is to create random textures of varying density, and then to get a firm grasp of how packing,
scatter and tgrid affect each other. This will provide you with a firm foundation with which to
make full use of the more complex facilities which the TEXTURE Group provides.

Harmonic fields or sets – handling the pitches
TEXTURE SIMPLE can also deal with harmonic fields or sets. Fields transpose the specified pitch
set into all (MIDI) octaves. Sets use only the specified pitches. These form pitch lattices onto
which the various note events are placed. The first thing to understand here is how the pitches
specified in the command parameters relate to those specified in the note data file.

But first, try this example of a fixed pitch set (Mode 3). The note data file ndfsim2.txt has two
pitches, both starting at time 0: 60 and 67.

 60
 #2
 0 1 60 0 0
 0 1 67 0 0

You will hear, due to the rapid repetitions, a textured interval of a perfect 5th.

SIMPLE Example 2 (Preset/Patch simplex2):
outdur (12) packing (0.025) scatter (0) tgrid (0) sndfirst (1) sndlast (1) mingain (36)
maxgain (84) mindur (0.2) maxdur (1.5) minpich (60) maxpich (67) – in command
line format:
texture simple 3 horn simplex2 ndfsim2.txt 12 0.025 0 0 1 1 36 84 0.2 1.5 60
67

The rule of thumb is that the program first generates the MIDI note values within
the range specified by the parameters, and then looks at the pitches listed in your
note data file and adjusts the former to fit onto the pitch grid specified by the
latter. (Reminder: The 'pitch parameters' referred to are those entered on the command
line or with a graphic interface. The note data file is a text file prepared beforehand.)

Thus the range of pitch values specified with the minpich and maxpich parameters is very
important:

If the parameter pitch range is the same as that in the note data file, all notes will lie
within the pitch range.
If the parameter pitch range is only one pitch, only one pitch will be produced,
regardless of whether or not there are different pitches in the note data file.
If the parameter pitch range is greater than that of the range of the list of notes in
the note data file, in Mode 1 pitches both inside and outside the note data file range
will be produced, but keeping to the pitch grid, albeit in another octave. In Mode 3,
only the pitches in the note data file will sound, as any other pitches generated by
the pitch parameters will be transposed to lie within the pitch set of the note data
file.
If the parameter pitch range is within one octave and all the pitches in the note data
file are the same, only one pitch will be produced.
If the parameter pitch range spans more than one octave and all the pitches in the
note data file are the same, the one pitch will sound in different octave transpositions
in Mode 1 (harmonic fields – all octaves), and only one pitch will sound in Mode 3
(harmonic sets – uses only the specified pitches).

file:///E:/CDP/DOCS/!PRINT/txsnds/simplex2.mp3

The above list of possibilities brings out the difference between Mode 1 and Mode 3, namely
that Mode 1 (Harmonic Fields) allows the pitch events listed in the note data file to sound in all
octaves (within the parameter pitch range), whereas Mode 3 (Pitch Sets) forces all pitches to lie
on the precise pitch grid specified in the note data file. However, note that the parameter
pitch range needs to be wide enough to accommodate the range in the note data file. If,
for example, the paramter pitch range is a perfect 5th and the note data range is a 12th, the note
data pitches which lie outside the perfect 5th will have nowhere to go, and will therefore sound
inside the perfect 5th.

Note that in TEXTURE SIMPLE, the velocity and the duration fields in the note data
file are ignored – this information is taken from the command parameters. Zeros are
placed in these fields in the examples in order to emphasise this point.

Harmonic fields or sets – handling the durations
We have already seen how the timing of the events is random within constraints, with the density
(and number of events) controlled by the packing parameter, while scatter can somewhat
randomise the time onsets of these events.

In TEXTURE SIMPLE, the duration parameter in the note data file is inactive and may be zero (or
any other value – it is ignored.) When this parameter is active, the interaction between the
command and note event durations listed in the note data file works in a similar way as that for
pitch.

Thus, the parameter duration range (mindur and maxdur) needs to be wide enough to
accommodate the shortest and longest duration listed in the note data file.

If the parameter duration range is smaller than the range of durations in the note data file,
the durations of the note events will be constrained within this smaller range.

However, if the parameter duration range is wider than the duration range of the note
events in the note data file, you will find that the note events will use this wider range.

So with durations, it may usually be best to match the duration ranges of the parameter
data and the note data file data.

Examples for harmonic sets and fields

The following example illustrates Mode 3. The notelist uses the pitches 60-67-72-76 (i.e., C-G-C-
E': root-fifth-octave-tenth). The parameter pitch range is set as 60 to 76 to encompass the range
in the note data file. Because Mode 3 is for pitch sets, we will hear only the 4 pitches listed in the
note data file, spread out in a randomised order over the specified output duration. Here is the
note data file for this (ndfsim3a.txt):

 60
 #4
 0 1 60 0 0
 0 1 67 0 0
 0 1 72 0 0
 0 1 76 0 0

Ndfsim3b.txt is the same, except the times (first column) are 0 4 7 and 11. You can run these
notedata files with the following command lines:

SIMPLE Examples 3a/b/c(Presets/Patches simplex3a,b &c):
outdur (12) packing (0.25) scatter (0) tgrid (0) sndfirst (1) sndlast (1) mingain (36)
maxgain (84) mindur (0.2) maxdur (1.5) minpich (60) maxpich (76) – in command
line format:
texture simple 3 horn simplex3a ndfsim3a.txt 12 0.25 0 0 1 1 36 84 0.2 1.5 60
76
texture simple 2 horn simplex3b ndfsim3b.txt 12 0.25 0 0 1 1 36 84 0.2 1.5 60
76
texture simple 2 horn simplex3c ndfsim3b.txt 12 0.25 0 0 1 1 36 84 0.2 1.5 36
96

Let's look at what the various parameter options chosen mean – reminder: the parameters after
the notedata file are (EX 3a):
outdur (12) packing (0.25) scatter (0) tgrid (0) sndfirst (1) sndlast (1) mingain (64) maxgain
(64) mindur (0.2) maxdur (1.5) minpich (60) maxpich (76)

The duration of the output soundfile is 12 seconds

The packing (i.e., density of – time between) – the note events is ¼ sec. If you give larger
and smaller values for this parameter, you will see that the program will generate fewer or
more note events. (Try a packing of 0.025.) No timings are given in the notelist: all are set
at 0.

Scatter is set at 0. This means that the note events will form regular divisions of the
outdur. The start time of each event will be increasingly randomised as the value for
scatter is increased – note the large range of 0 to 10 available for scatter. Try adding some
scatter.

Tgrid is also set to 0.

The first and last sounds are both given as '1'. This means that there is only one input
sound. If there are two to be used, you would put 1 2. The program reads your list of input
soundfiles and assigns numbers in the order in which they occur in command parameter for
input soundfiles. If you have more than one infile, you need additional entries for the real
or arbitrary pitch of each in the note data file (on the first line, separated by spaces).

The gain parameters set a MIDI 'velocity' range, in this case all notes will have an equal
mid-range amplitude.

The mindur maxdur range is set as '0.2 1.5', to match the range in the note data file.

When harmonic fields or sets are used, the duration (sustain) parameter in the note
data file has no effect and can be set to zero. This means that in TEXTURE
SIMPLE and TEXTURE GROUPED, the duration parameter in the note data file
is not used in any of the 5 modes. The note durations are taken from the
parameter duration range, unless you flag it to be ignored (-w flag), whereupon it
always uses the full duration of the input soundfile for each note events.
When decorations and ornaments are used (see the relevant programs), the
durations in the note data file must be set and have precedence over the parameter
duration range.
Also note that notelength is constrained by the duration of your input sound.
TEXTURE cannot lengthen the input sound – it can only shorten it.

file:///E:/CDP/DOCS/!PRINT/txsnds/simplex3a.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/simplex3b.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/simplex3c.mp3

Also, as you transpose your sound up, it will get shorter (time-domain transposition), which
also constrains how long it can be.

When the duration parameter range takes precedence over the durations specified in the
notelist, be sure that the shortest is given as mindur and the longest as maxdur to ensure that
full desired range is employed.

In the above example, also note that the 1.5 second durations are longer than the ¼ second
packing parameter, so we hear the notes overlap in the output texture – a rather nice effect.

The last parameter set used here specifies the pitch range. As noted above, this also affects
what is specified in the notelist, so if you want the notelist pitches to be used, be sure that the
lowest is given as minpich and the highest as maxpich.

New possibilities emerge when the time for each note event is specified in the note data file.
Try editing ndatseta.txt so that the four note events begin at 0.0, 4, 7 and 11 sec. respectively
(save as ndatsetb.txt).

Now run the same again in Mode 2. You will hear pitches on the harmonic lattice being drawn
in from different octaves.

You should now be able to experiment successfully with TEXTURE SIMPLE.

Two Fields/Sets

The next step is to use two harmonic fields or sets. Ndfsim4a.txt presents a revised
ndfsim3b.txt for use with Modes 2 or 4 of the program: 'changing harmonic fields/sets'. There
are 8 note events in two 'sets'. The first set starts at time 0, and in the second set, which starts
at 6 sec., we change to the minor tenth (75). In the output file, we hear the harmony change
from major to minor the second set at the 6 second mark. The 'b' example illustrates how a
much tighter packing results in a textured chord.

 [ndfsim4a.txt ndfsim4b.txt]
 60 60
 #8 #8
 0 1 60 0 0 0 1 60 0 0
 0 1 67 0 0 0 1 67 0 0
 0 1 72 0 0 0 1 72 0 0
 0 1 76 0 0 0 1 76 0 0
 6 1 60 0 0 6 1 60 0 0
 6 1 67 0 0 8 1 67 0 0
 6 1 72 0 0 10 1 72 0 0
 6 1 75 0 0 10 1 75 0 0

SIMPLE Examples 4a/b/c (Presets/Patches simplex4a,b, &c):
outdur (12) packing (0.25) scatter (0) tgrid (0) sndfirst (1) sndlast (1) mingain (36)
maxgain (84) mindur (0.2) maxdur (1.5) minpich (60) maxpich (76) – in command
line format:
texture simple 4 horn simplex4a ndfsim4a.txt 12 0.25 0 0 1 1 36 84 0.2 1.5 60
76
texture simple 4 horn simplex4b ndfsim4a.txt 12 0.025 0 0 1 1 36 84 0.2 1.5 60
76
texture simple 4 horn simplex4c ndfsim4b.txt 12 0.025 0 0 1 1 36 84 0.2 1.5 60
76

file:///E:/CDP/DOCS/!PRINT/txsnds/simplex4a.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/simplex4b.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/simplex4c.mp3

The 'c' example tells us more about how the timing works by staggering the times of the 2nd four
note events in ndfsim4a.txt: i.e., starting at times 6, 8, 10 and 10 seconds respectively, to create
ndfsim4b.txt. To do this, we again need to invoke Mode 4 (changing harmonic sets). Now we
hear the first four notes, the notes of the 1st set, playing in random order for the first 6 seconds.
Then, at time 6 seconds, we hear mainly the 5th note event (with some overlaps from the
previous set), at time 8 seconds, the 6th note event, and at time 10 seconds, we hear the 7th

and 8th notes in rapid succession, sounding a minor third – except that we will hear multiple
iterations of those notes according to the setting of the packing parameter. Again the close
packing at 0.025 sec creates a highly textured surface.

Were we to use Mode 3 with ndfsim4b.txt, the different start times would be disregarded and all
the note events would play in random order throughout.

The above information tells us that we can create a single melodic line by using Mode 4
and setting a different start time for a series of note events. Some overlapping will
occur if the notes are of different durations. Packing of onsets closer than the duration
of any of the note events will texture the lines, while packing of onsets spaced wider
than the duration of any of the note events will produce gaps.

So try this 'melodic' example for TEXTURE SIMPLE. The note data file ndfsim5.txt contains:

 60
 #10
 0.0 1 60 0 0
 1.0 1 67 0 0
 3.0 1 66 0 0
 3.5 1 62 0 0
 4.5 1 64 0 0
 6.0 1 69 0 0
 7.5 1 66 0 0
 8.5 1 60 0 0
 9.5 1 62 0 0
 10.0 1 67 0 0

SIMPLE Example 5 (Preset/Patch simplex5):
outdur (12) packing (0.4) scatter (0.3) tgrid (0) sndfirst (1) sndlast (1) mingain (36)
maxgain (84) mindur (0.2) maxdur (1.5) minpich (60) maxpich (69) – in command
line format:
texture simple 4 horn simplex5 ndfsim5.txt 12 0.4 0.3 0 1 1 36 84 0.2 1.5 60
69 -w

Note that the packing is set to be just under the shortest time between two note events, so the
melodic notes come through without too much texturing, following the note sequence in
ndfsim5.txt: C-G-F#-D-E-A-F#-C-D-G. The -w flag makes the note duration range redundant,
because when this is set the whole duration of the infile is used – i.e., the whole length of the
horn sound for each note of the outfile. In this case, this produces a great deal of overlapping
notes – hence the 'resonance'.

file:///E:/CDP/DOCS/!PRINT/txsnds/simplex5.mp3

Our final topic is time-varying texture shapes – i.e., envelope shapes with sloping edges.
Example 6 creates two of these with the files gprlo.brk and gprhi.brk. The first begins at C-60
and expands up to 70 and down to 49 at 5 seconds, returning to C-60 at 10 sec. Then the second
shape starts at 10.01 seconds at 78 high and 58 low and compressing towards the centre G-67
by 18.0 sec. The last portion repeats the G. I've added time-varying packing to create more
density where the texture shapes are widest. These are the files:

 [ndfsim6.txt simplpak.brk gprlo.brk gprhi.brk]
 60 0 0.25 0 60 0 60
 #22 5 0.1 5 49 5 70
 0.0 1 49 0 0 10 0.3 10 60 10 60
 0.0 1 52 0 0 10.01 0.05 10.01 58 10.01 78
 0.0 1 54 0 0 18 0.15 18 67 18 67
 0.0 1 55 0 0 20 0.25 20 67 20 67
 0.0 1 58 0 0
 0.0 1 60 0 0
 0.0 1 61 0 0
 0.0 1 64 0 0
 0.0 1 66 0 0
 0.0 1 67 0 0
 0.0 1 70 0 0
 10.0 1 58 0 0
 10.0 1 60 0 0
 10.0 1 61 0 0
 10.0 1 64 0 0
 10.0 1 66 0 0
 10.0 1 67 0 0
 10.0 1 70 0 0
 10.0 1 72 0 0
 10.0 1 73 0 0
 10.0 1 76 0 0
 10.0 1 78 0 0

And the parameters are set as follows:

SIMPLE Example 6 (Preset/Patch simplex6):
outdur (12) packing (simplpak.txt) scatter (0) tgrid (0) sndfirst (1) sndlast (1)
mingain (36) maxgain (84) mindur (0.2) maxdur (1.5) minpich (gprlo.brk) maxpich
(gprhi.brk) – in command line format:
texture simple 3 horn simplex6 ndfsim6.txt 21 simplpak.brk 0 0 1 1 36 84 0.2
1.5 gprlo.brk gprhi.brk

file:///E:/CDP/DOCS/!PRINT/txsnds/simplex6.mp3

Musical Applications

We can already see that this is an extremely powerful set of programs, which can undoubtedly be
used in endlessly imaginative ways. For the moment, let us simply outline what we have learned
so far. With the TEXTURE program group, we can create:

a melodic line, with gaps and/or overlaps.

METHOD: use Mode 4, specify specific start times for each note event in the
ndata file, and set the packing to be about the same as the shortest time
between notes. Note durations in the note data file can be zero (they are
disregarded with harmonic fields or sets); note overlaps result from making the
successive start times shorter than at least some of the note durations set with
the parameter duration range. With the -w flag set, there may be even more
overlapping if the sound's duration is longer than the packing setting, with
possibilities for resonances and harmonies emerging from the melody.

a melodic line, with a grainy, textured surface.

METHOD: use Mode 4 and specify specific start times in the ndata file and set
packing to be very short, certainly much shorter than the time between note
events. A very close packing (e.g., 0.01) may cause amplitude overload. You
can apply the gain reduction recommended by the program, or perhaps reduce
the maxdur value to lessen the amount of note overlap.

a texture of randomly selected notes drawn from a defined list of notes – i.e., these can,
for example, form a sonorous chord when the packing is tight.

METHOD: use Mode 3, set all start times in the ndata file to 0 and specify
pitches as desired. A mindur – maxdur range will produce note overlaps (unless
maxdur is less than the time gap between events).

a texture which moves between two harmonic fields (Mode 2 all octaves) or sets (Mode 4
only the pitches specified).

METHOD: in the ndata file, start all note events of the first set at one time, and
all note events of the second set at another, later, time.

a texture with envelope shapes, with pitches drawn from a defined harmonic set; time-
varying packing can help make the shapes audible by changing the note density.

METHOD: define harmonic sets, which may differ at different times. Then
create time-varying group pitch range files to define the envelope shapes.

End of TEXTURE SIMPLE

TEXTURE GROUPED – A texture of separate event
groups is shaped by random selections from
parameter ranges, with one or more input sounds; a
Harmonic Field/Set may be used

Usage

texture grouped mode infile [infile2...] outfile notedata outdur packing scatter tgrid
sndfirst sndlast mingain maxgain mindur maxdur minpich maxpich phgrid
grpspace gpsprange amprise contour
grpsizelo grpsizehi gppaklo gppakhi gpranglo gpranghi
[-aatten] [-pposition] [-sspread] [-rseed] [-w] [-d] [-i]

Modes

1 On a given harmonic field
2 On changing harmonic fields
3 On a given harmonic set
4 On changing harmonic sets
5 None

Parameters

infile – input soundfile to use as source material
infile2 ... – optional soundfile(s) to use as additional inputs
outfile – output soundfile
notedata – textfile, containing:

1. assumed MIDI 'pitch' of each input sound, specified on the 1st line. In Mode 5 this is all
that is needed. 60=original pitch.

2. In Modes 1 - 4 there is also a NOTELIST to define a Harmonic Field/Set, specified thus:
#N (where N is the number of pitches in the notelist).
This is followed by N lines in the format:
time (secs) infile_no pitch (MIDI) amp (MIDI) dur (secs)
Amp and dur are inactive.
Any times within the field must increase (or remain the same, during chords)

Form: MPV/–/–/– Form: MPV/HF-S/–/–

Mode 5 format Comments Modes 1-4 format Comments

60 MIDI pitch value(s) 60 MIDI pitch value(s)

 #N No. of lines to follow

 time instr pitch amp dur List of Harmonic Field/Set

outdur – minimum duration of the outfile
packing – (average) time in seconds between group onsets
scatter – randomisation of group onsets (Range: 0 to 10)
tgrid – minimum step in milliseconds for quantised timegrid (for group start times) (Default: 0)
sndfirst, sndlast – first and last soundfiles to use from a list of soundfiles for input (Range: 1 to
the number of sounds)
mingain, maxgain – minimum and maximum level of input sounds (Range: 1 to 127; Default: 64
and 64)
mindur, maxdur – minimum and maximum duration of events in texture
minpich, maxpich – minimum and maximum pitch (MIDI note value)
phgrid – a timegrid in milliseconds applying WITHIN the groups (Range: 0.0 to 1000.0)
gpspace – spatialisation of event-groups (Range: 0 to 5; Default: 1)

0 no change
1 scattered (Default)
2 decorations will move towards where the event is
3 decorations move away from where the event is
4 decorations follow the texture motion from Left to Right
5 decorations follow the texture motion from Right to Left

gpsprange – spatial range of event-groups (Range: 0 to 1; Default: 1)
amprise – amplitude change within groups (Range: 0 to 127; Default: 0)
contour – amplitude contour of groups (Range: 0 to 6; Default: 0)

0 mixture of the other types (Default)
1 crescendo
2 flat (no change)
3 decrescendo
4 crescendo or flat
5 crescendo or decrescendo
6 decrescendo or flat

gpsizelo, gpsizehi – smallest & largest number of events in any given group
gppaklo, gppakhi – shortest & longest time between event-onsets within a group (Range in
milliseconds: 0.023 to 60000.0 – i.e., 1 minute)
gpranglo, gpranghi – minimum & maximum pitch range for the note events in any given group
OR, for harmonic fields, the number of notes in the range of the harmonic field
-aatten – overall attenuation of the output
-pposition – centre of sound output image (Range: 0 to 1, where 0 is Left and 1 is Right;
Default: 0.5)
-sspread – spatial spread of texture events (Range: 0 to 1, where 1 is full spread)
-rseed – the same seed number will produce the same result on rerun (Default: 0, where 0 is
different result each time)
-w – always play whole input sound, ignoring duration values
-d – fixed timestep between groupnotes
-i – each group not confined to a fixed instrument (Default: fixed)

Understanding the TEXTURE GROUPED Process

Please refer to TEXTURE SIMPLE if you are not already familiar with the Texture functions, and also make
sure you have gone through the background information before continuing. The following text will focus
on what is specific to TEXTURE GROUPED.

The idea behind TEXTURE GROUPED is easily grasped by imagining several quick bursts of note events
separated by silence. A 'group' is a 'burst of notes', and the program handles creating silences inbetween
bursts. The program is, however, more flexible than that because:

the note groups can in fact overlap
the timing of the note onsets within a group doesn't have to be rapid
the pitch location where each group begins can vary

You can easily understand, therefore, how the program makes it possible to create textures which are more
varied than those of TEXTURE SIMPLE, and, if desired, punctuated by note groups which form gestural
shapes.

When using a command line rather than a graphic interface, to help with remembering all the parameters, I
find it helpful to use a batch file which starts with 'rem' lines which list the parameters in groups:

rem minoutdur pack scat tgrid
rem sndf sndl ming maxg mind maxd minp maxp
rem phgrid gpspace gpsprange amprise contour
rem gpsizelo gpsizehi gppaklo gppakhi gpranglo gpranghi
rem -aatten -ppos -ssprd -rseed -w -d -i

Unfortunately, Carriage Returns are not acceptable in the command line itself, so this memory aid is still not
as helpful as one might wish. Also, when exploring a program of this complexity, it can be helpful to make
use of the CDP environment variable which enables you to overwrite a soundfile of a specific name: set
CDP_OVERWRITE_FILE= aname. Then you can do several of versions without having to rename them,
and when you find one that you want to keep, just save it to a new name.

As before, let's start with an example we can hear. Example 1 produces separated groups of rapid-fire note
events; the groups start two seconds apart. We are using Mode 3 ('on a given harmonic set'), with the note
data file ndfgrp1.txt, which is:

 60
 #4
 0 1 62 0 0
 0 1 64 0 0
 0 1 66 0 0
 0 1 67 0 0

GROUPED Example 1 (Preset/Patch grouped1/groupex1):
... minoutdur (10) packing (2) scatter (0) tgrid (0)
sndf (1) sndl (1) ming (30) maxg (64) mind (0.25) maxd (1.25) minp (36) maxp (84)
phgrid (0) gpspace (1) gpsprange (1) amprise (0) contour (0)
gpsizelo (10) gpsizehi (20) gppaklo (25) gppakhi (50) gpranglo (4) gpranghi (4)
texture grouped 3 horn groupex1 ndfgrp1.txt 10 2 0 0 1 1 30 64 0.25 1.2 36 84 0 1 1 0 0
10 20 25 50 4 4

file:///E:/CDP/DOCS/!PRINT/txsnds/groupex1.mp3

All the examples for TEXTURE GROUPED can be made by running groupexs.bat from the
DOS prompt. The soundfiles produced can be deleted with groupdel.bat.

Timing from group to group
TEXTURE GROUPED builds on TEXTURE SIMPLE by dealing with groups of notes where formerly there would
have been only one. Packing determines the amount of time from the onset of one group to the onset of
the next group, scatter randomises this timing, and tgrid quantises it, i.e, introduces regularity. In the
above example, there are 2 seconds between the onsets of each group. Note that in the note data file, the
start times, velocities and durations are set to zero. The start times become relevant when using changing
harmonic fields or sets.

Shaping each group – number of events & pitch range
The number of events allowed in any given group is set with the gpsizelo & gpsizehi parameters, 10 – 20 in
the above example.

Note that these can both be set to 1 so that there will only be one event in each group. This can
be a useful way to observe the time gaps between groups, and the effect that scatter and tgrid
have on this timing.

Similarly, the size of the pitch range allowed in any given group is set with gpranglo & gpranghi. In the above
example, each group will remain within a range of only 4 notes (matching the note data file).

The pitch start point of a group is selected from within minpich & maxpich. Thus, the overall pitch
range, set by minpich & maxpich may, for example, be an 8ve; but the pitch range in any given
group, set by gpranglo & gpranghi, could be a minor 3rd.

Shaping each group – durations
Since we are dealing with groups, however, the next salient question is how do we control the timing of
events within the groups? Let's look at the following parameters:

mindur & maxdur set a note event duration range; each note event in the group (in the texture) will be
a random length chosen at random within this range. What happens here is indicated by a range for
example of 0.25 to 1.2: we hear overlapping among the note events simply because some are
considerably longer than others. As with TEXTURE SIMPLE, none of the Modes actually use the duration
parameter in the note data file. Therefore, these can all be set to zero. The note data durations are
used for ornaments and decorations.

phgrid handles a timegrid in milliseconds applied within each group – note that it can be 0. You will
probably need to think carefully about the relationship of the groups onset times (packing), the
duration of the note events (mindur & maxdur), and the number of events in the group (grpsizelo &
grpsizehi). The packing may need to be longer if the note durations are relatively long and you do want
to retain a gestural separation between the groups. Note that phgrid (milliseconds) is a quantisation
factor. The packing within the group (gppaklo & gppakhi is what mainly controls the note event onset
timing – milliseconds! NB: The gppakhi parameter must be at least equal to phgrid for the latter to
have the desired effect; i.e., the phgrid parameter must lie within the packing range within the group.

gppaklo & gppakhi handles the onsets of events within groups. Note that very small values for the
packing can be used, and consider what might be appropriate in each instance.

Musical Applications

Here are some suggestions for different types of texture that can be created with TEXTURE GROUPED.

GROUPED Example 1 (Preset/Patch grouped1/groupex1): – We can start with the example used at
the beginning of the TEXTURE GROUPED documentation: rapid-fire note events within a group
separated by silence. Thus each group becomes a musical gesture. Reminder: the initial command set
was:

rem minoutdur (10) packing (2) scatter (0) tgrid (0)
rem sndf (1) sndl (1) ming (30) maxg (64) mind (0.25) maxd (1.25) minp (36) maxp (84)
rem phgrid (0) gpspace (1) gpsprange (1) amprise (0) contour (0)
rem gpsizelo (10) gpsizehi (20) gppaklo (25) gppakhi (50) gpranglo (4) gpranghi (4)
texture grouped 3 horn groupex1 ndfgrp1.txt 10 2 0 0 1 1 30 64 0.25 1.2 36 84 0 1 1
0 0 10 20 25 50 4 4

GROUPED Example 2 (Preset/Patch grouped2/groupex2): – The time between group onsets
gradually decreases from 2 to ½ second, as set by grppack.brk: 0 2, 10 0.5.
texture grouped 3 horn groupex2 ndfgrp1.txt 10 grppack.brk 0 0 1 1 30 64 0.25 1.2 36 84 0 1 1 0
0 10 20 25 50 4 4
GROUPED Example 3 (Preset/Patch grouped3/groupex3): – A regularly timed sequence of random
notes taken from within the group range can be achieved by adapting the initial example by setting, for
example, phgrid to 200, and raising gppakhi also to 200.
texture grouped 3 horn groupex3 ndfgrp1.txt 10 2 0 0 1 1 30 64 0.25 1.2 36 84 200 1 1 0 0 10 20
25 200 4 4
GROUPED Example 4 (Preset/Patch grouped4/groupex4): – Experiment with more overlap by
changing mindur to 0.75 (all other parameters kept the same).
texture grouped 3 horn groupsex4 ndfgrp1.txt 10 2 0 0 1 1 30 64 0.75 1.2 36 84 200 1 1 0 0 10
20 25 200 4 4
GROUPED Example 5 (Preset/Patch grouped5/groupex5): – Alternatively, we could go for a
staccato effect by using a very small note duration range: mindur 0.1 & maxdur 0.2 and making the
inter-group packing range wider than the durations: gppaklo 25 & gppakhi 300.
texture grouped 3 horn groupsex5 ndfgrp1.txt 10 2 0 0 1 1 30 64 0.1 0.2 36 84 200 1 1 0 0 10 20
25 300 4 4
GROUPED Example 6 (Preset/Patch grouped6/groupex6): – Now overlap the groups themselves
by changing packing to 0.5. Reset phgrid to 0 and reduce gppakhi to 50 to restore the initial rapid-fire
group note events.
texture grouped 3 horn groupex6 ndfgrp1.txt 10 0.5 0 0 1 1 30 64 0.2 0.3 36 84 0 1 1 0 0 10 20
25 50 4 4

End of TEXTURE GROUPED

file:///E:/CDP/DOCS/!PRINT/txsnds/groupex1.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/groupex2.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/groupex3.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/groupex4.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/groupex5.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/groupex6.mp3

TEXTURE DECORATED|PREDECOR|POSTDECOR – A
texture of 'decoration' events shaped by internal
grouping parameters, selected at random from a pitch
range or from a Harmonic Field/Set and attached to
an underlying 'line'; one or more input sounds

Usage

texture decorated|predecor|postdecor mode infile [infile2 ..] outfile notedata outdur skiptime
sndfirst sndlast mingain maxgain mindur maxdur
phgrid grpspace gpsprange amprise contour
grpsizelo grpsizehi gppaklo gppakhi gpranglo gpranghi centring
[-aatten] [-pposition] [-sspread] [-rseed]
[-w] [-d] [-i] [-h] [-e] [-k]

Modes

1 On a given harmonic field
2 On changing harmonic fields
3 On a given harmonic set
4 On changing harmonic sets
5 None

Parameters

infile – input soundfile to use as source material
infile2 ... – optional soundfile(s) to use as additional inputs
outfile – output soundfile
notedata – textfile, containing:

1. assumed MIDI 'pitch' of each input sound, specified on the 1st line
(60=original pitch)

2. followed by a 'line' substructure NOTELIST, specified thus:
#N (where N is the number of pitches in the notelist).
This is followed by N lines in the format:
time (secs) infile_no pitch (MIDI) amp (MIDI) dur (secs); amp and dur are
inactive fields in TEXTURE DECORATED.
different times must be given, and they must must increase; all 0's for chords are not
allowed.
this is all that is needed for Mode 5.

3. in Modes 1 to 4, you need an additional set of lines for the decoration definition; these are
also introduced by the number of lines (#N, which acts as a separator). The decoration is
'tied into' the above 'line' substructure set by providing the same start time (may be
several decoration notes at the same time) and by duplicating the MIDI note value for one
of the decoration notes. (See illustrations below.)

Form: MPV/NS/–/– Form: MPV/NS/HF-S/–

Mode 5 format Comments Modes 1-4
format Comments

60 MIDI pitch value(s) 60 MIDI pitch value(s)

#N No. of lines to follow #N No. of lines to follow

time instr pitch
amp dur

List of 'line' (Nodal
Substructure)

time instr pitch
amp dur

List of 'line' (Nodal
Substructure)

 #N No. of lines to follow

 time instr pitch
amp dur List of Harmonic Field/Set

outdur – minimum duration of the outfile
skiptime – time between repeats of motif-to-decorate in notedata, i.e., between runs of the 'line'
substructure notelist
sndfirst, sndlast – first and last soundfiles to use from a list of soundfiles for input (Range: 1 to
the number of sounds)
mingain, maxgain – minimum and maximum level of input sounds (Range: 1 to 127; Default: 64
and 64)
mindur, maxdur – minimum and maximum duration of events in texture
phgrid – a timegrid in milliseconds applying WITHIN the decorations (Range: 0.0 to 1000.0)
gpspace – spatialisation of decoration-groups (Range: 0 to 5; Default: 1)

0 no change
1 scattered (Default)
2 decorations will move towards where the event is
3 decorations move away from where the event is
4 decorations follow the texture motion from Left to Right
5 decorations follow the texture motion from Right to Left

gpsprange – spatial range of decoration-groups (Range: 0 to 1; Default: 1)
amprise – amplitude change within decorations (Range: 0 to 127; Default: 0)
contour – amplitude contour of decorations (Range: 0 to 6; Default: 0)

0 mixture of the other types (Default)
1 crescendo
2 flat (no change)
3 decrescendo
4 crescendo or flat
5 crescendo or decrescendo
6 decrescendo or flat

gpsizelo, gpsizehi – smallest & largest number of events in the decorations
gppaklo, gppakhi – shortest & longest time between event-onsets in the decorations (Range in
milliseconds: 0.023 to 60000.0 – i.e., 1 minute)
gpranglo, gpranghi – minimum & maximum pitch range of the decorations, given not in MIDI
note values but as the number of adjacent tones to be used: from the full chromatic field in Mode
5, OR from the members of the harmonic field/set defined in the other Modes)
centring – how the decoration pitches centre on line pitches (Range: 0 to 7; Default: 0)

0 centred (default)
1 above
2 below
3 centred and above

4 centered and below
5 above and below
6 centred and above and below

-aatten – overall attenuation of the output
-pposition – centre of sound output image (Range: 0 to 1, where 0 is Left and 1 is Right;
Default: 0.5)
-sspread – spatial spread of texture events (Range: 0 to 1, where 1 is full spread)
-rseed – the same seed number will produce the same result on rerun (Default: 0, where 0 is
different result each time)
-w – always play whole input sound, ignoring duration values
-d – fixed timestep between groupnotes
-i – each group not confined to a fixed instrument (Default: fixed)
-h – decorate topnote of chord (Default: decorate first note listed)
-e – decorate all the notes of chords
-k – discard original line, after decoration

Understanding the TEXTURE DECORATED Process

The key to TEXTURE DECORATED is that the (ascending) start times defining the the 'line' of
nodes to be decorated are important. The decorations are connected to the line centred
(DECORATED), before and ending on (PREDECOR), and starting precisely on (POSTDECOR),
these time points. Breakpoint times also have to tie in with these times or nothing will happen.
Musically, this means that the decorations on a series of nodes can be varyingly constructed.
Remember that a 'decoration' consists of notes chosen randomly from the decoration field, which
can be more or less harmonic. This randomness is what differentiates DECOR and ORNATE. In
ORNATE, there can be figures with internal rhythm and velocity fully defined and also attached to
nodes. In MOTIFS, fully defined figures are used, but not a defined nodal substructure.

The TEXTURE DECORATED node data file, then, uses two groups of data:

1. a 'line' of note events with start times to define a substructure on which to build the
decorations, and

2. the decorations themselves.
In Mode 5 these are defined only by the parameters: group size, group packing and
group range: i.e., not in the note data file. Thus, in Mode 5 there is no second (or
third) section in the note data file.
In Modes 1–4 the decorations are defined as a second set of data in the note data
file, beginning with the number of lines of data to come, e.g, #5. We will see
examples of this below.

In all cases, the decorations are randomly selected from the pitch range or note lists provided – a
'decoration' is here defined as a random assembly of pitches. When harmonic sets are used, only
the notes listed are used (in random order). When harmonic fields are used, all octaves of the
notes listed are used (in random order). Thus the decorations can be given a harmonic quality.
Longer timings between the notes of the decorations may cause new decorations to come in (on
the next specified substructure node) before the previous one has finished. Such overlapping can
be musically useful.

The decorations are by default located around (centred on) the 'line' substructure nodes. The
centring parameter setting enables the decorations to be located above, below etc. the 'line'
substructure nodes.

Similarly, with TEXTURE DECORATED the decorations are centered on the start times listed for
the main substructure nodes, i.e., they will tend to come in a little before the node start time and
finish a little after this time. When TEXTURE PREDECOR is invoked, the decorations happen
before the main substructure nodes, ending at the node start time. The decorations start
precisely on the node start time and therefore come after the node with TEXTURE POSTDECOR.
Larger group packing times will spread out the decoration, however, and may cause it to overlap
(still be unfolding) when the next node begins. By having a lower group size or shorter durations
for the group packing, it is possible to have the decoration end before the next node begins, in
which case there will be a silence until the time for that node is reached.

In the introductory notes about the note data file, the order of placement of the data was
mentioned. First is the line, then the data for harmonic fields/sets – which is also the data
used for decorations. Thus, this second set of data can be any group of notes: it doesn't have
to be 'harmonic'. Thirdly, there is the data for ornaments/motifs, which we shall cover in
TEXTURE ORNATE etc.

Basically, what happens in the note data file for TEXTURE DECORATED is this:

1. First, the notes in any timed, ornamented or decorated line in the texture are defined.
'Line' here is taken to mean just that: the basic linear substructure for the textural
additions. This list of notes begins by defining the number of notes in this 'line', e.g., #5.

This list is required in ALL modes of TEXTURE DECORATED, with start
times which must increase from note to note. In Mode 5 it is the only field
that is needed.

2. Secondly, the notes in any harmonic fields or sets are defined. This is the list which forms
the basis of the decoration, which is in fact a 'random assembly' of these notes. This list of
notes begins by defining the number of notes in this field or set.e.g., #5 – thus the
number-of-notes definitions act as separators in the note data file. The actual note
event data, i.e., the 'field' of notes for the decorations, follows. All start times in this
'decoration field' are 0.

What happens is this: gpranglo/hi define how many notes of this field to
use for any given decoration. It then draws that number of notes from this field
(and no other notes), with each node note of the substructure list as the time
and pitch point of reference, and plays them in random order ('random
assembly'). Note that the overall pitch range as well as the top of the field itself
must be able to must accommodate gpranglo/hi number of field notes
around, above, or below the lowest/ highest node in the substructure,
according to the centring parameter.

3. Thirdly, the notes or any ornaments or motifs are specified. Again, this list of notes begins
by defining the number of notes in this ornament or motif, e.g., #3.

This third list is not required by / used in TEXTURE DECORATED.

While similar to TEXTURE GROUPED, we notice that TEXTURE DECORATED lacks the trio of
parameters which defined the timing between groups (packing scatter tgrid). Rather, we find the
new parameters skiptime and centring. This is because it is building its texture on a linear
substructure, which is what is first defined in the note data file.

So let us focus our attention on these parameters.

skiptime – The first list of 'line' substructure notes in the note data file form the core
outline of the decoration. Remember that this list includes start times for each note event,
such that the whole list forms a single musical unit. If the output duration is longer than
this unit, the whole sequence will repeat. Skiptime is the time between these repeats.

centring – A decoration will usually have several notes, though it may also consist of
repeated notes only. Centring deals with how these several notes lie against the
substructure node of the 'line': centred on it, lying below or above it, etc.

We are now ready to look at some examples and will do so directly in the 'Musical Applications'
section below.

Musical Applications

All the examples for TEXTURE DECORATED can be made by running decorexs.bat from
the DOS prompt. The soundfiles produced can be deleted with decordel.bat.

See decorexs.bat for a listing of the examples in the TEXTURE DECORATED section. You can run this batch
file to create the examples. You will find it and the various note data and breakpoint files in your Texture
Pack.

Example 1a
Our first example for TEXTURE DECORATED uses Mode 5, where only the 'line' substructure note list is
needed. We shall create 4 nodes and place a decoration consisting of 5 repeating notes on each of these
nodes. In Mode 5 we don't have to specify the decoration as the information required is supplied by the
parameters. Here is a note data file which specifies these four 'line' substructure nodes, ndfdec1.txt:

 60
 #4
 0.0 1 60 0 0
 2.0 1 67 0 0
 4.0 1 63 0 0
 6.0 1 62 0 0

This will create a line of substructure nodes C-G-Eb-D, where C is Middle C, at 0, 2, 4 and 6 seconds
respectively. With an outdur of 20 seconds, this 4-node musical unit will repeat after 2 skiptime seconds.
Skiptime begins at the start time of the last substructure node. As the time between nodes is a regular two
seconds, the node sequence will repeat without breaking that regularity.

The decoration of 5 micro-trills (which may sound like just notes which repeat) is set by making both
gpsizelo and gpsizehi equal to 5, and we'll have a reasonably quick, but not too fast, and regular, note speed
within the decoration by making both gppaklo and gppakhi equal to 60 ms. The trills are very small (equal to
or less than a semitone) because gpranglo/hi are both set to 1.

Here is the command line which summarises this data:

DECORATED Example 1a (Preset/Patch decor1a/decorex1a):
... minoutdur (20) skiptime (2.0)
sndf (1) sndl (1) ming (36) maxg (64) mind (1.0) maxd (1.0)
phgrid (0) gpspace (1) gpsprange (1) amprise (0) contour (0)
gpsizelo (5) gpsizehi (5) gppaklo (60) gppakhi (60) gpranglo (1) gpranghi (1)
centring (0)
texture decorated 5 horn decorex1a ndfdec1.txt 20 2.0 1 1 36 64 1.0 1.0 0 1 1
0 0 5 5 60 60 1 1 0

The role of the group pitch range gpranglo/hi is instructive:

In the above example, we hear the substructure pitch shape very clearly because these are
the only pitches used (gpranglo/hi are 1); the nodes are textured by rapid micro-trils due
to the very short group packing. The whole shape repeats after 4 (skiptime) seconds.

If we make gpranglo/hi both 2, we hear semitone trills starting on the note below and
ending on and sustaining the final (substructure) node after the 5 notes of the decoration
until the full 1 second has finished (centring is 0). If centring is then changed to 1 (i.e.,
'above'), the trill begins on the node, trills with and ends on the note above (which in this
case is harmonically odd). If we make centring 2 (i.e., 'below'), in this case the trilling
effect starts below the node.

If we make gpranglo/hi both 3, we get whole tone trills (centring back to 0). This tells us
that the interval count seems to start at 1 for the same note (which will be repeated at
group packing rates), 2 for a semitone, 3 for a whole tone, 4 for a minor third, etc., i.e.,
one more than the usual way we tend to count intervals. Actually, the numbers do refer to
semitones in the normal way. It's just that, if you specify a maximum range of a semitone,
for example, the notes generated (in the Mode 5 Neutral case) will all fall within a semitone
range. The interval of a semitone (1) that you specify is the maximum distance a note
might land on. In general most notes (in this case) will be less than a semitone away
from the base pitch (0). What you hear, then, is not repeated notes, but 'micro-trills' on
intervals within a semitone – and they are not exactly trills either, because no note is
repeated! When larger intervals are specified, many of the notes will fall within this range,
often far short of the full interval specified.

If we make gpranglo/hi both 4, we get a wash of all the notes within a minor third, centred
on the nodes. This wash illustrates the 'random assembly' aspect of TEXTURE DECORATED.

If we make gpranglo = 1 and gpranghi = 4, we get a mixture of the above possibilities on
the various nodes: i.e., the program will make a random selection of anywhere from 1 to 4
notes for the decoration range.

if we make gpranglo = 1 and gpranghi = the breakpoint file dm5gprhi.brk, we hear the
number of notes in the decorations alternating between 1 and several on each of the
nodes. We present this as Example 2. Note that the breakpoint times in dm5gprhi.brk
match those in the note data file (every 2 seconds), and skiptime is still 0.01 so that there
is no appreciable delay between repeats of the substructure musical unit. (The timings in
the breakpoint files must increase, but do not have to match the node times. The
parameter values used at nodes will be those in force at the time of the nodes. If nodes lie
between times specified in the breakpoint file, you will pick up the intermediate value at
that time.)

file:///E:/CDP/DOCS/!PRINT/txsnds/decorex1a.mp3

The first substructure note does not receive a decoration with PREDECOR (this is because
the first event in the line is assumed to be at time zero – so no decoration can happen
before this). In mode DECORATED, a random mixture of pre- and post- decorations is
produced, so the first note is sometimes decorated and sometimes not.

Example 1b
Still in Mode 5 and using the same note data file as in Example 1a (ndfdec1.txt), Example 1b
also employs the breakpoint file dm5gprhi.brk for the parameter gpranghi:

 0 1
 2 8
 4 1
 6 6
 8 1
 10 10
 12 1
 14 7
 16 1
 18 9
 20 1

POST-DECORATED Example 1b (Preset/Patch decor1b/ decorex1b):
... minoutdur (20) skiptime (2.0)
sndf (1) sndl (1) ming (36) maxg (64) mind (1.0) maxd (1.0)
phgrid (0) gpspace (1) gpsprange (1) amprise (0) contour (0)
gpsizelo (5) gpsizehi (5) gppaklo (60) gppakhi (60) gpranglo (1) gpranghi
(dm5gprhi.brk) centring (0)
texture postdecor 5 horn decorex1b ndfdec1.txt 20 2.0 1 1 36 64 1.0 1.0 0 1 1
0 0 5 5 60 60 1 dm5gprhi.brk 0

POSTDECOR is used so that the decorations will begin precisely on the node start time: because
in POSTDECOR the decorations come after the node. We hear little burbles on every other node
because in dm5gprhi.brk every other node has a pitch range greater than 1.

Example 2a
If we now move on to the harmonic set/field modes, we will see how the 'random assembly'
feature is still present, but tied into specifically named pitches. We start with Mode 3 and here we
need to define the pitches from which the decoration will be formed, so a second note list is
needed in the note data file. In the following example, the substructure nodes form a rising G-
minor shape: G4-Bb4-D5-G5, where C5 is Middle C. Each note of this shape is then decorated
with a whole tone trill. Gpranglo/hi is set to 2, meaning in this case how many notes from
the decoration field to use at any one time – and only these notes are used, not any of the
inbetween ones as in Mode 5. Note that all the times of the decoration field are set to 0.
Here is the note data file for this example, ndfdec2a.txt:

file:///E:/CDP/DOCS/!PRINT/txsnds/decorex1b.mp3

 60
 #4
 0.0 1 60 0 0
 2.0 1 67 0 0
 4.0 1 63 0 0
 6.0 1 60 0 0
 #3
 0.0 1 60 0 0
 0.0 1 64 0 0
 0.0 1 67 0 0

POST-DECORATED Example 2a (Preset/Patch decor2a/ decorex2a):
... minoutdur (12) skiptime (2.0)
sndf (1) sndl (1) ming (36) maxg (64) mind (1.0) maxd (1.0)
phgrid (0) gpspace (1) gpsprange (1) amprise (0) contour (0)
gpsizelo (5) gpsizehi (9) gppaklo (60) gppakhi (60) gpranglo (3) gpranghi (3)
centring (1)
texture postdecor 3 horn decorex2a ndfdec2a.txt 20 2.0 1 1 36 64 1.0 1.0 0 1 1
0 0 5 9 60 60 3 3 1

Note that gpranglo/hi is set to 3, to use all three notes in the decoration field. The same three
decoration notes decorate each of the substructure nodes. In this case, all the notes match
except for the Eb/E-natural. Thus only the third node sounds different. Using the '1' option for
centring did NOT result in the notes of the decoration being transposed to build on (above) each
of the substructure nodes. All the nodes are decorated with the same chord because those are
the only (3) notes given in the decoration field in Mode 3 in which only the notes in the defined
harmonic set are used. If we provide more notes, in fact the pitches needed to place a triad on
each node, we find that this is indeed what happens. Thus we can hear that TEXTURE
DECORATED does use each node as a tonal centre for each decoration on it.

Example 2b
Example 2b illustrates constructing a decoration field that will enable building different triads on
the substructure nodes. The note data file ndfdec2b.txt is as follows. Note that all start times are
still 0 – the decoration start times come from the node itself.

 60
 #8
 0.0 1 60 0 0
 2.0 1 63 0 0
 4.0 1 67 0 0
 6.0 1 70 0 0
 8.0 1 74 0 0
 10.0 1 70 0 0
 12.0 1 67 0 0
 14.0 1 63 0 0
 #7
 0.0 1 60 0 0
 0.0 1 63 0 0
 0.0 1 67 0 0
 0.0 1 70 0 0
 0.0 1 74 0 0
 0.0 1 77 0 0
 0.0 1 81 0 0

file:///E:/CDP/DOCS/!PRINT/txsnds/decorex2a.mp3

POST-DECORATED Example 2b (Preset/Patch decor2b/ decorex2b):
... minoutdur (28) skiptime (2.0)
sndf (1) sndl (1) ming (36) maxg (64) mind (1.0) maxd (1.0)
phgrid (0) gpspace (1) gpsprange (1) amprise (0) contour (0)
gpsizelo (5) gpsizehi (9) gppaklo (60) gppakhi (60) gpranglo (3) gpranghi (3)
centring (1)
texture postdecor 3 horn decorex2b ndfdec2b.txt 20 2.0 1 1 36 64 1.0 1.0 0 1 1
0 0 5 9 60 60 3 3 1

Now we have different decorations (all of which are triads) coming in on each time-specified
node. We have also used centring = 1 so that the node is the root (bottom note) of each
decoration.

The key to achieving decorations restricted to triadic formations on the various nodes lies in the
design of the harmonic field/set. The set used here moves up steadily in 3rds so that all adjacent
members of the set remain a 3rd apart (major or minor): C - Eb - G - Bb - D' - F' - A'. The
highest node is D' (74) so that the F' and A' are available to form the triad. Thus, when the triads
are built on each of the nodes, we get the following triads: Cm, Ebmaj, Gm, Bbmaj, and Dm.

Note that if we tried to have major and minor versions of the same triad, this would introduce
adjacent semitones into the field, e.g., C - Eb - E-natural - G. The program can only select
grprange adjacent events, so in this case the first group would use C - Eb - E-natural and not
form a triad.

Mode 4 used with this note data file produces the same results because no times are specified in
the harmonic field/set. It is quite possible to have changing fields, in which case the grprange
adjacent notes would change their harmonic character each time a new field came in. Modes 1
and 2 introduce note-events at different octaves, as permitted by the overall pitch range.

Example 2c
The next example illustrates the same process, this time with a note data file designed to
produce dyads (pairs of notes around a single interval). Here the pitches in the decoration field
are selected so that they will harmonise with the nodal tones. Then they are all set to begin at
time zero, and we rely on gpranglo/hi (set to 2) to select pairs of notes from this field.

The idea of the example is to build dyads on each of the substructure nodes. We use centring = 1
to get the decoration to start on and lie above the substructure node. This time all the nodes of
the substructure are decorated. Ndfdec2c.txt follows, and we are running it first in Mode 3.

 60
 #4
 0.0 1 55 0 0
 2.0 1 58 0 0
 4.0 1 62 0 0
 6.0 1 65 0 0
 #8
 0.0 1 55 0 0
 0.0 1 58 0 0
 0.0 1 62 0 0
 0.0 1 65 0 0
 0.0 1 67 0 0
 0.0 1 70 0 0
 0.0 1 74 0 0
 0.0 1 77 0 0

file:///E:/CDP/DOCS/!PRINT/txsnds/decorex2b.mp3

POST-DECORATED Example 2c (Preset/Patch decor2c/ decorex2c):
... minoutdur (20) skiptime (2.0)
sndf (1) sndl (1) ming (36) maxg (64) mind (1.0) maxd (1.0)
phgrid (0) gpspace (1) gpsprange (1) amprise (0) contour (0)
gpsizelo (5) gpsizehi (5) gppaklo (60) gppakhi (60) gpranglo (2) gpranghi (2)
centring (1)
texture postdecor 3 horn decorex2c ndfdec2c.txt 20 2.0 1 1 36 64 1.0 1.0 0 1 1
0 0 5 5 60 60 2 2 1

Now this is important: We set gpranglo/hi to 2 to specify that we should use pairs of notes
from the decoration field. What we hear, then, are the notes of the dyads selected from the
decoration field and only these notes played in random order above each of the respective nodes.
The decoration field has to be carefully constructed so that the desired harmonic effect is
achieved.

Mode 4 used with the same data produces the same results. Modes 1 and 2 introduce octave
notes, as permitted by the overall pitch range.

Building on these foundations, we can achieve more varied and 'plastic' results by employing
ranges and time-varying breakpoint files for the various parameters. But recall what was
observed above, that the effect of the times in breakpoint files seems constrained by the start
times of the nodes: pending further experimentation, it appears that the parameter value in force
when a node begins is what is used: the breakpoint times do not override the node times and
therefore cannot bring the parameter value in at a breakpoint time which differs from a node
time.

Example 3
Example 3 illustrates a more flexible use of TEXTURE DECORATED. The note data file ndfdec3.txt
defines five nodes each 5 seconds apart. These are then decorated from a field of 15 notes, with
a time-varying set of values for gprangehi.

 [ndfdec3.txt]
 60
 #5
 0 1 60 0 0
 5 1 64 0 0
 10 1 67 0 0
 15 1 70 0 0
 20 1 60 0 0
 #15
 0 1 49 0 0
 0 1 52 0 0
 0 1 54 0 0
 0 1 55 0 0
 0 1 58 0 0
 0 1 60 0 0
 0 1 61 0 0
 0 1 64 0 0
 0 1 66 0 0
 0 1 67 0 0
 0 1 70 0 0
 0 1 72 0 0
 0 1 73 0 0
 0 1 76 0 0
 0 1 78 0 0

file:///E:/CDP/DOCS/!PRINT/txsnds/decorex2c.mp3

The breakpoint file for gprangehi is dx3gprhi.brk:

 0 8
 5 10
 10 15
 15 12
 20 11

Note that the times match those for the 'line' nodes in the note data file. When we hear
the resultant sound, we can also observe that each decoration is centred on the node pitch – i.e.,
they move up and down in pitch according to the underlying node. The group pitch range low is
set at a constant 2, so the range of decoration field notes used in each burst will vary between 2
and 8, 2 and 10, 2 and 15, etc.

The gpsize is set to give a relatively low number of events: from 10 to 25. The gppak range is
fast, but varied: between 40 and 125 ms. The overall effect is little bursts of note events, with
gaps inbetween. These gaps are those between the end of the decoration and the start of the
next node – not skiptime, which occurs at the end of the whole sequence. We are using
POSTDECOR so that the decorations begin with the node.

POST-DECORATED Example 3 (Preset/Patch decor3/ decorex3):
... minoutdur (20) skiptime (1)
sndf (1) sndl (1) ming (36) maxg (64) mind (1.0) maxd (1.0)
phgrid (0) gpspace (1) gpsprange (1) amprise (0) contour (0)
gpsizelo (10) gpsizehi (25) gppaklo (40) gppakhi (125) gpranglo (2) gpranghi
(dx3gprhi.brk) centring (0)
texture postdecor 3 horn decorex3 ndfdec3.txt 20 1 1 1 36 64 1.0 1.0 0 1 1 0 0
10 25 40 125 2 dx3gprhi.brk 0

In Example 3, skiptime is in fact never used because the node times are spread out to fill the
whole outdur, so the node sequence doesn't get a chance to repeat.

End of TEXTURE DECORATED / PREDECOR / POSTDECOR

file:///E:/CDP/DOCS/!PRINT/txsnds/decorex3.mp3

TEXTURE MOTIFS – A texture of fully defined motifs
attached to pitches selected at random from a pitch
range or from a Harmonic Field/Set
(MOTIFS: only first note of motif constrained,
MOTIFSIN: all notes of motif constrained); one or
more input sounds

Usage

texture motifs|motifsin mode infile [infile2 ..] outfile notedata outdur packing scatter tgrid
sndfirst sndlast mingain maxgain minpich maxpich
phgrid grpspace gpsprange amprise contour multlo multhi
[-aatten] [-pposition] [-sspread] [-rseed]
[-w] [-d] [-i]

Modes

1 On a given harmonic field
2 On changing harmonic fields
3 On a given harmonic set
4 On changing harmonic sets
5 None [not used by MOTIFSIN]

Parameters

infile – input soundfile to use as source material
infile2 ... – optional soundfile(s) to use as additional inputs
outfile – output soundfile
notedata – textfile, containing:

1. assumed MIDI 'pitch' of each input sound, specified on the 1st line; a pitch value must be
given for each infile (separated by a space). 60=original pitch.

2. In Mode 5 this is followed by a NOTELIST defining a motif, specified like this:
#N (where N is the number of pitches in the motif).
a motif specified thus: time (secs) infile_no pitch (MIDI) amp (MIDI) sustain
(secs).
Different start times must be given, and they must must increase; all 0's for chords
are not allowed.
This is all that is needed in Mode 5. There may be more than one motif defined in
this way.

3. ALTERNATIVELY: In Modes 1 – 4, a harmonic field/set notelist must be defined BEFORE the

motifs are listed. This is in the format:

#N (where N is the number of pitches in the notelist).
a harmonic field specified thus: time (secs) infile_no pitch (MIDI) amp (MIDI)
 sustain (secs).
In the harmonic set/field(s) amp and sustain are inactive fields. Also, in the
harmonic field/set definition, time can be all zeros in Modes 1 and 3, whereas
in Modes 2 and 4 different times are given when the field's pitch contents
change at specified times.
The motif(s) themselves must now be defined, exactly as above.

4. In the motifs, time, amp and sustain and all active fields. Thus the motif is
able to be very precisely defined.

5. Any number of motifs may be defined in this way, which is also true in Mode 5.

Form: MPV/M/–/– Form: MPV/HF-S/M/–

Mode 5 format Comments Modes 1-4 format Comments

60 MIDI pitch value(s) 60 MIDI pitch value(s)

#N No. of lines to
follow #N No. of lines to follow

time instr pitch amp
dur List of Motifs time instr pitch amp

dur
List of Harmonic

Field/Set

 #N No. of lines to follow

 time instr pitch amp
dur List of Motifs

outdur – minimum duration of the outfile
packing – (average) time between motif onsets
scatter – randomisation of event onsets (Range: 0 to 10)
tgrid – minimum step in milliseconds for a quantised time grid for motif start times (Default: 0)
sndfirst, sndlast – first and last soundfiles to use from a list of soundfiles for input (Range: 1 to
the number of sounds)
mingain, maxgain – minimum and maximum level of input sounds (Range: 1 to 127; Default: 64
and 64)
minpich, maxpich – minimum and maximum pitch (MIDI note value)
phgrid – a timegrid in milliseconds applying WITHIN the motifs (Range: 0.0 to 1000.0)
gpspace – spatialisation of event-groups (Range: 0 to 5; Default: 1)

0 no change
1 scattered (Default)
2 motifs will move towards where the event is
3 motifs move away from where the event is
4 motifs follow the texture motion from Left to Right
5 motifs follow the texture motion from Right to Left

gpsprange – spatial range of event-groups (Range: 0 to 1; Default: 1)
amprise – amplitude change within motifs (Range: 0 to 127; Default: 0)
contour – amplitude contour of groups (Range: 0 to 6; Default: 0)

0 mixture of the other types (Default)
1 crescendo
2 flat (no change)
3 decrescendo
4 crescendo or flat
5 crescendo or decrescendo
6 decrescendo or flat

multlo, multhi – smallest & largest multiplier of total input duration of motif
-aatten – overall attenuation of the output
-pposition – centre of sound output image (Range: 0 to 1, where 0 is Left and 1 is Right;
Default: 0.5)
-sspread – spatial spread of texture events (Range: 0 to 1, where 1 is full spread)
-rseed – the same seed number will produce the same result on rerun (Default: 0, where 0 is
different result each time)
-w – always play whole input sound, ignoring duration values
-d – motif notes all have the same duration as the ornamented note
-i – motifs are not confined to the instrument of the ornamented note (Default: same note)

Understanding the TEXTURE MOTIFS Process

TEXTURE MOTIFS creates fully defined figures like the ornaments of TEXTURE ORNATE, but does
not attach them to a user-defined Nodal Substructure. It attaches them either to pitches
randomly selected from a pitch range, or from the pitches defined in a Harmonic Field/Set, again
making a random selection of which pitches to use. There are interesting and useful differences
between Mode 5 and Modes 1-4 and between MOTIFS and MOTIFSIN.

The note data file

In Mode 5 there is no Harmonic Field/Set, and so the first section of the note data file is used for
the motif itself, in which all fields are active. There can be more than one motif by adding
another #N and the motif note events. The pitches for each note event are selected at random
from the range defined by minpich - maxpich (the pitch range parameters).

In the other Modes, the Harmonic Field/Set comes first, followed by the motif(s). In the
Harmonic Field/Set, the time field uses zeros for Modes 1 and 3 (the motif, with its own internal
timing, repeats after skiptime seconds, and the pitches are selected at random from the field).
Changing times (ascending) are used for Modes 2 and 4 (only the pitches given for a certain time
will be used during that time period – Example 4 illustrates this).

The difference in how the motif notes are attached by MOTIFS
and MOTIFSIN

MOTIFS – Only the first note of the motif is 'forced onto the harmonic Field/Set'. This means
that only the first note of the motif need be specified in the field – all the other notes of the motif
are accurately transposed to follow on from there. You hear the first note of the motifs moving
about in the field, and the rest of the motif flowing nicely from it, with nothing missed out. This
feature can be musically useful when intense repetitions of a (whole) motif are desired. This was
not the case with DECORATED or ORNATE, where the Harmonic Field/Set had to contain all the
notes which might be used when the decoration or ornament was transposed.

MOTIFSIN – In this case, all the notes of the motif are 'forced' onto the field (MOTIFSIN does
not have a Mode 5). The result of this is that all the other notes in the motif will come from the
field. The software is very clever about this, and nothing is left out when a transposed motif calls
for a pitch which isn't in the field – but the motif is altered in the process. What happens is that
there are transpositions and repetitions of the motif pitches in order to recast the motif to use
exclusively the pitches of the field. This muddles the shape of the motif quite a bit, which can be
musically useful when you want to develop a texture using a motif which transforms in
unpredictable ways.

Musical Applications

All the examples for TEXTURE MOTIFS can be made by running motifexs.bat from the
DOS prompt. The soundfiles produced can be deleted with motifdel.bat.

EXAMPLE 1

Our first example illustrates Mode 5 by playing a defined motif on pitches randomly selected from
a pitch range. There is therefore no Harmonic Field/Set, so the note data file ndfmot1.txt gets
straight to the definition of the motif itself:

 60
 #10 (10-event motif)
 0.0 1 60 70 0.3
 0.1 1 61 50 0.3
 0.2 1 66 50 0.3
 0.3 1 67 50 0.3
 0.4 1 66 70 0.3
 0.5 1 67 60 0.3
 0.6 1 70 60 0.3
 0.7 1 66 60 0.3
 0.8 1 72 80 0.3
 0.9 1 66 50 0.3

MOTIFS Example 1 (Preset/Patch motif1/motifex1):
... outdur (12) packing (1) scatter (0) tgrid (0)
snd1st (1) sndlast (1) ming (30) maxg (90)
minp (48) maxp (84) phgrid (0) grpspace (1) gpsprange (1)
amprise (0) contour (0) multlo (1) multhi (1)
[-aatten -pposition -sspread -rseed -w -d -i]
texture motifs 5 marimba motifex1 ndfmot1.txt 12 1 0 0 1 1 30 90 48 84 0 1 1 0
0 1 1

What we hear is the defined motif repeating every second, beginning on different pitches
selected from the pitch range 48 to 84 (3 octaves). By using the seed option, you can produce
different but reproduceable outputs each time, if you want to explore different random selections
from the pitch range. You can add more motifs in the note data file, and the program will select
among them as it builds the output soundfile.

file:///E:/CDP/DOCS/!PRINT/txsnds/motifex1.mp3

EXAMPLES 2a/b/c

These three examples make use of Mode 3. The note data file ndfmot2.txt starts by defining a
Harmonic Field/Set and then defines a quick-note motif which lasts for 1 second. Skiptime is set
to 1 second, so the repeats (at different transpositions) follow on without a break.

 60
 #9 (Harmonic Field/Set)
 0.0 1 60 0 0
 0.0 1 61 0 0
 0.0 1 63 0 0
 0.0 1 64 0 0
 0.0 1 66 0 0
 0.0 1 67 0 0
 0.0 1 68 0 0
 0.0 1 70 0 0
 0.0 1 72 0 0
 #10 (10-event motif)
 0.0 1 60 70 0.3
 0.1 1 61 50 0.3
 0.2 1 66 50 0.3
 0.3 1 67 50 0.3
 0.4 1 66 50 0.3
 0.5 1 67 70 0.3
 0.6 1 70 50 0.3
 0.7 1 66 50 0.3
 0.8 1 72 80 0.3
 0.9 1 66 60 0.3

MOTIFS Examples 2a/b/c (Preset/Patch motif2a, b, &c /motifex2a, b, &c – 2b
uses MOTIFSIN: harmonic):
... outdur (12) packing (1) scatter (0) tgrid (0)
snd1st (1) sndlast (1) ming (30) maxg (90)
minp (48) maxp (84) phgrid (0) grpspace (1) gpsprange (1)
amprise (0) contour (0) multlo (0.5) multhi (2)
[-aatten -pposition -sspread -rseed -w -d -i]
texture motifs 3 marimba motifex2a ndfmot2.txt 12 1 0 0 1 1 30 90 48 84 0 1 1
0 0 0.5 2
texture motifsin 3 marimba motifex2b ndfmot2.txt 12 1 0 0 1 1 30 90 48 84 0 1
1 0 0 0.5 2
texture motifs 3 marimba motifex2c ndfmot2.txt 12 0.25 0 0 1 1 30 90 48 84 0 1
1 0 0 0.5 2

What we hear:

We hear a defined motif play, at varying tempos, on a random selection from the notes of a
defined harmonic set. The first note of the motif is taken (at random) from the field, and
(all) the rest of the motif follows on as is expected (i.e., transposed).

The 'b' version uses MOTIFSIN with the same parameters, and we hear the motif being
warped as it is recast to use only the pitches of the defined harmonic set. Some pitches
may be omitted or repeated as a result of the warping. Note how this differs from the
use of Mode 3 in MOTIFS.

The 'c' version creates overlaps with a skiptime of 0.25.

file:///E:/CDP/DOCS/!PRINT/txsnds/motifex2a.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/motifex2b.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/motifex2c.mp3

Further work done in 2001 sheds a little more light on the above examples. It is important to
realise that in both the 'a' and the 'b' versions, the start note is drawn at random from the
harmonic field or set: that is, the motifs will repeat with transpositions. If there are overlaps, the
motif and field/set need to be coordinated so that desired results are obtained.

I was seeking to have the motif repeat, always beginning on the same pitch, the pitch
defined as the start-pitch of the motif itself, with or without overlaps. This can be done, I found,
by defining the harmonic set, defining the motif with pitch and velocity (important to bring out
rhythmic groups), and then giving the start pitch of the motif as both the lower and
upper pitch range values. I expected it to play the motif by repeating only one pitch, but in
fact all the pitches of the motif are used.

TMOTIFS Preset Examples 2a and 2b appear to be doing this (starting on the same pitch), but
this is not in fact happening. It appears to be happening because both the harmonic set and the
motif are constructed with intervals of a minor-3rd, so it all harmonises no matter which start
pitch of the harmonic set is used. One must use the same technique described above (both low
and high pitch range = the start pitch of the motif) for the motif to repeat starting each time on
the same pitch. A motif structured with different intervals would reveal this. (AE)

EXAMPLES 3a/b/c

We now introduce two inputs (marimba & horn) and two motifs. The second motif uses longer
note values than the first. The marimba is slightly lower than the horn in pitch, so we lower its
reference MIDI note value to 59. The note data file ndfmot3.txt below defines the Harmonic
Field/Set first, and then the two motifs. Again the times in the field are all zero for use with Mode
3 and skiptime determines the time between repetitions of the motif.

 59 60
 #9 (Harmonic Field/Set)
 0.0 1 60 0 0
 0.0 1 61 0 0
 0.0 1 63 0 0
 0.0 1 64 0 0
 0.0 1 66 0 0
 0.0 1 67 0 0
 0.0 1 68 0 0
 0.0 1 70 0 0
 0.0 1 72 0 0
 #10 (motif 1)
 0.0 1 60 70 0.3
 0.1 1 61 50 0.3
 0.2 1 66 50 0.3
 0.3 1 67 50 0.3
 0.4 1 66 50 0.3
 0.5 1 67 70 0.3
 0.6 1 70 50 0.3
 0.7 1 66 50 0.3
 0.8 1 72 80 0.3
 0.9 1 66 60 0.3
 #3 (motif 2)
 0.0 1 60 40 1.5
 0.34 1 67 45 1.5
 0.67 1 72 50 1.5

MOTIFS Examples 3a/b/c (Preset/Patch motif3a, b, &c /motifex3a, b, &c)
... outdur (12) packing (1) scatter (0) tgrid (0)
snd1st (1) sndlast (1) ming (30) maxg (90)
minp (48) maxp (84) phgrid (0) grpspace (1) gpsprange (1)
amprise (0) contour (0) multlo (0.5) multhi (2)
[-aatten -pposition -sspread -rseed -w -d -i]
texture motifs 3 marimba horn motifex3a ndfmot3.txt 12 1.0 0 0 1 2 30 90 48 84
0 1 1 0 0 0.5 2
texture motifs 3 marimba horn motifex3b ndfmot3.txt 12 0.5 0 0 1 2 30 90 48 84
0 1 1 0 0 1 1
texture motifs 1 marimba horn motifex3c ndfmot3.txt 12 0.5 0 0 1 2 30 90 48 84
0 1 1 0 0 1 1

We hear:

Our 'a' version plays the two motifs in varying orders and tempos, with the instrument
playing each motif selected at random. The duration field of the second motif specifies 1.5
sec., which doesn't have any audible effect on the marimba sound, but when the horn
plays, the sound continues. overlapping the entry of the next motif, even though each
motif starts regularly at the start of each second (skiptime) is one, and each motif is 1
second long.

The 'b' version takes away the tempo change (multlo and multhi are restored to 1) and
introduces a 1/2 sec overlap. We begin to hear a bit of counterpoint as the two different
rhythms overlap each other, sometimes with the same and sometimes with different
instruments.

The 'c' version repeats the previous command with Mode 1, which opens up different
octaves, further enriching the texture in a way which seems to allow more motivic
repetitions.

EXAMPLE 4

The final example for MOTIFS calls upon Mode 4 to illustrate how the start pitches of the motifs
can be controlled by timing information in the Harmonic Field/Set. Only C-60 is allowed for the
first two seconds, then only pitches C-61 and C-62 can be used (to attach the motifs to) during
the next two seconds, etc. Ndfmot4.txt contains these alteraions. The tempo is increased (0.75)
and a little overlap put in (skiptime = 0.5) to allow more entries/repetitions of the motifs within
each time period.

file:///E:/CDP/DOCS/!PRINT/txsnds/motifex3a.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/motifex3b.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/motifex3c.mp3

 59 60
 #9 (Harmonic Field/Set – changing times)
 0.0 1 60 0 0
 2.0 1 61 0 0
 2.0 1 63 0 0
 4.0 1 64 0 0
 4.0 1 66 0 0
 4.0 1 67 0 0
 6.0 1 68 0 0
 6.0 1 70 0 0
 6.0 1 72 0 0
 #10 (motif 1)
 0.0 1 60 70 0.3
 0.1 1 61 50 0.3
 0.2 1 66 50 0.3
 0.3 1 67 50 0.3
 0.4 1 66 50 0.3
 0.5 1 67 70 0.3
 0.6 1 70 50 0.3
 0.7 1 66 50 0.3
 0.8 1 72 80 0.3
 0.9 1 66 60 0.3
 #3 (motif 2)
 0.0 1 60 40 1.5
 0.34 1 67 45 1.5
 0.67 1 72 50 1.5

MOTIFS Example 4 (Preset/Patch motif4/motifex4):
... outdur (12) packing (0.5) scatter (0) tgrid (0)
snd1st (1) sndlast (2) ming (30) maxg (90)
minp (48) maxp (84) phgrid (0) grpspace (1) gpsprange (1)
amprise (0) contour (0) multlo (0.75) multhi (0.75)
[-aatten -pposition -sspread -rseed -w -d -i]
texture motifs 4 marimba horn motifex4 ndfmot4.txt 12 0.5 0 0 1 2 30 90 60 72
0 1 1 0 0 0.75 0.75

We hear a fast moving texture of motifs with a lot of repetition on the same or nearby pitches,
the whole texture moving upwards in pitch every two seconds. This provides a mechanism for
designing overall pitch movement in a motif-based texture.

End of TEXTURE MOTIFS / MOTIFSIN

file:///E:/CDP/DOCS/!PRINT/txsnds/motifex4.mp3

TEXTURE ORNATE|PREORNATE|POSTORNATE – A
texture of events with fully user-specified ornaments
placed on a 'line', optionally with pitches restricted to
a Harmonic Field/Set; one or more input sounds

Usage

texture ornate|preornate|postornate mode infile [infile2 ..] outfile notedata outdur skiptime
sndfirst sndlast mingain maxgain mindur maxdur
phgrid grpspace gpsprange amprise contour
multlo, multhi
[-aatten] [-pposition] [-sspread] [-rseed]
[-w] [-d] [-i] [-h] [-e]

Modes

1 On a given harmonic field
2 On changing harmonic fields
3 On a given harmonic set
4 On changing harmonic sets
5 None

Parameters

infile – input soundfile to use as source material
infile2 ... – optional soundfile(s) to use as additional inputs
outfile – output soundfile
notedata – textfile, containing:

1. assumed MIDI 'pitch' of each input sound, specified on the 1st line; a pitch value must be
given for each infile (separated by a space). 60=original pitch.

2. followed by a 'line' substructure NOTELIST, specified thus:
#N (where N is the number of pitches in the notelist).
In all Modes, this is followed by N lines to define the nodal substructure on which the
ornaments will be placed. These are in the format time (secs) infile_no pitch (MIDI)
 amp (MIDI) dur (secs). Amp and dur are inactive fields in TEXTURE ORNATE in the
node substructure section.
different start times must be given, and they must must increase; all 0's for chords
are not allowed.

3. In Modes 1–4 this is followed by N lines to define the harmonic field/set in the format:
time (secs) infile_no pitch (MIDI) amp (MIDI) dur (secs). Starttime, Amp and dur are
inactive fields in TEXTURE ORNATE in the harmonic field/set section. This section is
omitted for Mode 5.

4. Now the ornament itself must be defined. Again, this is in the form time (secs) infile_no
 pitch (MIDI) amp (MIDI) dur (secs) – in which time, amp and dur and all active
fields. Thus the ornament is able to be very precisely defined.

Form: MPV/NS/O/– Form: MPV/NS/HF-S/O

Mode 5 format Comments Modes 1-4
format Comments

60 MIDI pitch value(s) 60 MIDI pitch value(s)

#N No. of lines to follow #N No. of lines to follow

time instr pitch
amp dur

List of 'line' (Nodal
Substructure)

time instr pitch
amp dur

List of 'line' (Nodal
Substructure)

#N No. of lines to follow #N No. of lines to follow

time instr pitch
amp dur List of Ornaments time instr pitch

amp dur List of Harmonic Field/Set

 #N No. of lines to follow

 time instr pitch
amp dur List of Ornaments

outdur – minimum duration of the outfile
skiptime – time between repeats of motif-to-ornament in notedata, i.e., between runs of the 'line'
substructure notelist
sndfirst, sndlast – first and last soundfiles to use from a list of soundfiles for input (Range: 1 to
the number of sounds)
mingain, maxgain – minimum and maximum level of input sounds (Range: 1 to 127; Default: 64
and 64)
mindur, maxdur – minimum and maximum duration of events in texture
phgrid – a timegrid in milliseconds applying WITHIN the ornaments (Range: 0.0 to 1000.0)
gpspace – spatialisation of event-groups (Range: 0 to 5; Default: 1)

0 no change
1 scattered (Default)
2 ornaments will move towards where the event is
3 ornaments move away from where the event is
4 ornaments follow the texture motion from Left to Right
5 ornaments follow the texture motion from Right to Left

gpsprange – spatial range of event-groups (Range: 0 to 1; Default: 1)
amprise – amplitude change within ornaments (Range: 0 to 127; Default: 0)
contour – amplitude contour of groups (Range: 0 to 6; Default: 0)

0 mixture of the other types (Default)
1 crescendo
2 flat (no change)
3 decrescendo
4 crescendo or flat
5 crescendo or decrescendo
6 decrescendo or flat

multlo, multhi – smallest & largest multiplier of total input duration of motif
-aatten – overall attenuation of the output
-pposition – centre of sound output image (Range: 0 to 1, where 0 is Left and 1 is Right;
Default: 0.5)
-sspread – spatial spread of texture events (Range: 0 to 1, where 1 is full spread)
-rseed – the same seed number will produce the same result on rerun (Default: 0, where 0 is
different result each time)
-w – always play whole input sound, ignoring duration values
-d – ornament notes all have the same duration as the ornamented note

-i – ornaments are not confined to the instrument of the ornamented note (Default: same note)
-h – ornaments on highest note of any chord (Default: on first note listed)
-e – ornaments on all the notes of any chord

Understanding the TEXTURE ORNATE Process

The salient feature in TEXTURE ORNATE is that an ornament is attached to an underlying
substructure node. The ornament is a precisely defined musical figure: the start time, amplitude
and duration fields in the ornament definition part of the note data file are all active. Individual
ornament note durations may be longer than the time until the next ornament note start time,
which makes fades and legato effects possible. Amplitude values will be important to shape the
ornament rhythmically in an audible way.

All the examples for TEXTURE ORNATE can be made by running ornatexs.bat from the
DOS prompt. The soundfiles produced can be deleted with ornatdel.bat.

MODE 5

The ornament has specified start times, amplitude and durations for each of its notes. A 'turn'
(upper and lower neighbors around a centre) could look like this, a quintuplet over the time of a
crotchet:

 #5
 0.0 1 60 84 0.3
 0.2 1 62 64 0.3
 0.4 1 60 68 0.3
 0.5 1 58 72 0.3
 0.8 1 60 76 0.3

In Mode 5 this is all that is needed. This ornament will be automatically transposed in both time
and pitch so that it begins on each of the nodes of the substructure melody line defined in the
first part of the note data file. Because no harmonic field is defined, the full chromatic set is used
by default. Thus the complete file ndforn1.txt could look like this:

 60
 #4 (node substructure)
 0.0 1 60 0 0
 2.0 1 67 0 0
 4.0 1 65 0 0
 6.0 1 62 0 0
 #5 (ornament definition)
 0.0 1 60 84 0.3
 0.2 1 62 64 0.3
 0.4 1 60 68 0.3
 0.5 1 58 72 0.3
 0.8 1 60 76 0.3

ORNATE Example 1 (Preset/Patch ornate1/ornatex1):
... minoutdur (12) skiptime (2)
sndf (1) sndl (2) ming (30) maxg (90) mind (1.0) maxd (1.0)
phgrid (0) gpspace (1) gpsprange (1) amprise (0) contour (0)
multlo (1) multhi (1)
texture postornate 5 marimba ornatex1 ndforn1.txt 12 2 1 1 30 90 1.0 1.0 0 1 1
0 0 1 1

The tempo and time-relationship between repeats of the ornament offers many possibilities.
In the above file, the ornament lasts 1 second, and there are 2 seconds between substructure
nodes. Thus there will be gap of 1 second before the next ornamented node. The speed (tempo)
of the ornaments can be altered with multlo/hi: 1 is no change (e.g., crotchet/quarter-note =
60), 0.5 doubles the speed (e.g., crotchet/quarter-note = 120) etc. However, this does not
change the time between the ornaments.

Although you can enter ornament timings with any values, I (AE) find it useful to use 1 second
(crotchet/quarter-note = 60) as a reference. Then standard values for durations, such as 0.5 for
½ sec (quaver/ eighth-note), can be used, maintaining a conventional musical understanding of
beats. This is normally how it is done in Csound, for example, with a tempo control to alter the
actual rate of flow. And here in TEXTURE, the formula to calculate a tempo ratio (multiplier) for
the ornaments will be 60 divided by the desired tempo. E.g.,

60/72 = 5/6 = 0.833
60/120 = 1/2 = 0.5
60/90 = 2/3 = 0.667
60/84 = 5/7 = 0.714
60/76 = 15/19 = 0.789
etc.

Skiptime is the time between runs of the whole node substructure. It begins at the start time
of the last substructure node. For no overlap, the rule of thumb is:

'the last ornament start time plus the length of time after this until the next
ornament is to begin'.

The actual duration of this note (in the duration field of the note data file) may be longer/shorter
than this to achieve a legato/staccato effect.

In the above example the total ornament time would be 0.8 + 0.2 to make 1 full second so that
it will stay 'on the beat'. Thus, for the whole sequence to repeat seamlessly without a break (or
an overlap), skiptime would be 1, 1 being the full time we want for the ornament. You can
specify any outdur, so the sequence repeats until outdur is reached. Skiptimes less than 1 will,
therefore, cause overlaps. We shall explore this in greater detail in Example 3 below.

Modes 1 to 4

You therefore have a great deal of control over the design of your ornaments. In these Modes,
you can define a harmonic field or set so that only these pitches will be used. Note that you
have to take care that all the pitches are available to enable the ornament to transpose to all
nodes. If you hear any missing or incorrectly repeated ornament notes, the cause is usually a
pitch missing in the harmonic field/set. The transposition within the program is done by simple
addition, not by indexing, which accounts for this restriction.

file:///E:/CDP/DOCS/!PRINT/txsnds/ornatex1.mp3

It is possible to have more than one ornament. These are defined in the same way (starting
with the #N separator). The start time of each ornament in the note data file will be zero. They
are then attached to nodes at the times when the nodes are set to begin. The program will select
from the list of ornaments in random order. If you want this random order to vary on different
runs of the program, but be reproduceable, use the seed flag [-r] with specific values greater
than 1.

More than one input sound file may be used. Provide a MIDI pitch for each of them in the
note data file and adjust last snd-in-list to use accordingly. You can, in all the Texture
programs, make the value of the first- and last-sound-to-use vary over time (using a
breakpoint file) so you can sweep through a list of input sound files as the texture
progresses. Different ornaments will use different sounds. If you specify the Scatter decor
instrs flag [-i], the various notes within an ornament will randomly use different sounds.
(Specifying specific instruments for specific ornament notes in the note data file has no effect,
and specifying instruments for substructure nodes badly confuses the program, although it
doesn't complain).

Remember that it will often be very important to shape the ornament with the amplitude field.
The notes will just run on together without any aural definition unless accents, crescendos and
decrescendos are introduced.

Musical Applications

We shall present three examples here, all of which use Mode 3 so that the full note data file is
used (all three sections).

ORNATE Example 2

ORNATE Example 2 defines a harmonic set which enables a little figure to be accurately
transposed onto two substructure nodes: C-60 and G-67. The note data file is ndforn2.txt as
follows:

 60 59
 #2 (the nodal substructure)
 0.0 1 60 0 0
 2.0 1 67 0 0
 #8 (the harmonic set definition)
 0.0 1 60 0 0
 0.0 1 62 0 0
 0.0 1 63 0 0
 0.0 1 65 0 0
 0.0 1 67 0 0
 0.0 1 69 0 0
 0.0 1 70 0 0
 0.0 1 72 0 0
 #8 (the ornament definition)
 0.0 1 60 30 0.5
 0.25 1 62 30 0.5
 0.5 1 63 30 0.5
 0.8333 1 62 30 0.5
 1.0 1 63 30 0.5
 1.25 1 65 30 0.5
 1.5 1 63 30 0.5
 1.75 1 62 30 0.5

Two input soundfiles are used.

ORNATE Example 2 (Preset/Patch ornate2/ornatex2):
... minoutdur (12) skiptime (2)
sndf (1) sndl (2) ming (30) maxg (90) mind (1.0) maxd (1.0)
phgrid (0) gpspace (1) gpsprange (1) amprise (0) contour (0)
multlo (1) multhi (1)
texture postornate 3 marimba horn ornatex2 ndforn2.txt 12 2 1 2 30 90 1.0 1.0
0 1 1 0 0 1 1

What we hear is a series of repetitions of the same ornament, placed alternately on the C and
the G nodes. Sometimes the whole ornament is played by the horn and sometimes by the
marimba – a random selection of the instrument is being made, but once made, it plays the
whole ornament. Were we to use the -i flag, this random selection of instrument would be made
for each note of the ornament, an altogether different result not unlike a Medieval hocket. If
instr_no is specified for the various ornament notes, this has no effect on these results, with or
without the -i flag.

The actual pitch level of the ornaments could be inaccurate if the two source sounds
were actually at different pitches and the same MIDI pitches in the note data file
were given for each of them. If accuracy is important, you might be able to adjust
one of the the MIDI pitch values given in the note data file (remember, you don't
have to use whole numbers), or you could retune one of the source sounds.

We should also observe that the various repetitions follow on at regular intervals. The nodes are
spaced at two seconds, the ornament takes 2 seconds, and skiptime is set at two seconds, which
relates to the period between runs of the whole sequence of the nodal substructure. If we made
skiptime 3 seconds, we would hear two ornaments, one on C and one on G, and then a pause of
1 second. Why 1 second? This is important: because the skiptime begins at the start time of the
last node of the substructure. The ornament lasts 2 seconds, so there will be one more second of
silence before the sequence repeats.

ORNATE Example 3

This example creates several different ornaments and attaches them to a stepwise rising nodal
substructure. Again, the ornaments are selected in random order. Again, the harmonic set
definition has to have all the notes it needs to play all the ornaments transposed to each of the
nodes. This implies a compositional task to consider how to create ornaments which will follow
one another in the manner you wish when they occur in various orders at various transposition
levels.

The now much longer note data file ndforn3.txt is as follows:

 60
 #5 (node substructure)
 0.0 1 60 0 0
 3.0 1 62 0 0
 6.0 1 63 0 0
 9.0 1 65 0 0
 12.0 1 67 0 0
 #17 (harmonic set definition)
 0.0 1 60 0 0
 0.0 1 62 0 0
 0.0 1 63 0 0
 0.0 1 64 0 0
 0.0 1 65 0 0

file:///E:/CDP/DOCS/!PRINT/txsnds/ornatex2.mp3

 0.0 1 66 0 0
 0.0 1 67 0 0
 0.0 1 68 0 0
 0.0 1 69 0 0
 0.0 1 70 0 0
 0.0 1 71 0 0
 0.0 1 72 0 0
 0.0 1 73 0 0
 0.0 1 74 0 0
 0.0 1 75 0 0
 0.0 1 76 0 0
 0.0 1 77 0 0
 #8 (ornament 1)
 0.0 1 60 60 0.5
 0.25 1 62 55 0.5
 0.5 1 63 65 0.5
 0.8333 1 62 55 0.5
 1.0 1 63 70 0.5
 1.25 1 65 65 0.5
 1.5 1 63 60 0.5
 1.75 1 62 55 0.5
 #8 (ornament 2)
 0.0 1 60 70 0.5
 0.2 1 63 72 0.5
 0.4 1 62 74 0.5
 0.6 1 65 76 0.5
 0.8 1 63 78 0.5
 1.0 1 66 90 0.5
 1.5 1 67 85 0.5
 1.75 1 66 85 0.5
 #6 (ornament 3)
 0.0 1 60 60 0.5
 0.34 1 63 50 0.5
 0.67 1 67 50 0.5
 1.00 1 62 60 0.5
 1.25 1 62 45 0.5
 1.50 1 66 50 0.5
 #6 (ornament 4)
 0.0 1 60 50 0.5
 0.25 1 67 60 0.5
 0.75 1 60 40 0.5
 1.00 1 65 70 0.5
 1.50 1 65 70 0.5
 1.75 1 62 65 0.5
 #14 (ornament 5)
 0.0 1 60 40 0.5
 0.125 1 62 45 0.5
 0.25 1 63 50 0.5
 0.375 1 65 55 0.5
 0.5 1 67 60 0.5
 0.625 1 65 55 0.5
 0.75 1 63 50 0.5
 0.875 1 62 45 0.5
 1.0 1 63 70 0.5
 1.17 1 65 65 0.5
 1.33 1 67 70 0.5
 1.5 1 65 65 0.5
 1.66 1 63 70 0.5
 1.83 1 62 70 0.5

To help read it and write out the ornaments in musical notation, here's a quick review of key
duration values (and Note Chart lists MIDI note vales):

1.0 = 1 crotchet (quarter note)
0.75 = a dotted quaver (dotted eighth note)
0.5 = 1 quaver (eighth note)
0.25 = 1 semiquaver (16th note)
0.125 = 1 demisemiquaver (32nd note)
0.33 = 1 quaver in a triplet (.33 + .33 + .34 in any order)
0.166 = 1 semiquaver in a triplet (.167 + .167 + .166 in any order)
0.66 = 1 crotchet in a triplet (.67 + .67 + .66 in any order)

Note that all the ornaments start at time zero. They take their actual start time from the node to
which they become attached. Note that they are also transposed to that node. These are all the
parameters in command line format:

ORNATE Example 3 (Preset/Patch ornate3/ornatex3):
... minoutdur (21) skiptime (4)
sndf (1) sndl () ming (30) maxg (90) mind (1.0) maxd (1.0)
phgrid (0) gpspace (1) gpsprange (1) amprise (0) contour (0)
multlo (0.5) multhi (1.2)
texture postornate 3 marimba ornatex3 ndforn3.txt 21 4 1 1 30 90 1 1 0 1 1 0 0
0.5 1.2

What we hear is a sequence of different ornaments, probably not in the order in which the
appear in they note data file. You will also notice that each ornament is at a slightly different
tempo. This is because the mult parameter has been given a range from less than 1 (0.5) to
greater than 1 (1.2).

ORNATE Example 4

This example plays with phasing the same ornament with precise rhythmic control, which enables
us to create specific interval relationships in the overlapping figures. To do this, we design a
single ornament for the purpose, in this case a rising and falling scale. This is note data file
ndforn4.txt with one node, a harmonic set and the scale ornament:

 60
 #1 (single node)
 0.0 1 60 0 0
 #8 (scale as harmonic set)
 0.0 1 60 0 0
 0.0 1 62 0 0
 0.0 1 63 0 0
 0.0 1 65 0 0
 0.0 1 67 0 0
 0.0 1 69 0 0
 0.0 1 70 0 0
 0.0 1 72 0 0
 #16 (ornament: rising and falling scale)
 0.0 1 60 50 0.3
 0.25 1 62 55 0.3
 0.5 1 63 60 0.3
 0.75 1 65 65 0.3
 1.0 1 67 70 0.3
 1.25 1 69 75 0.3
 1.5 1 70 80 0.3

file:///E:/CDP/DOCS/!PRINT/notechrt.htm
file:///E:/CDP/DOCS/!PRINT/txsnds/ornatex3.mp3

 1.75 1 72 85 0.3
 2.0 1 72 85 0.3
 2.25 1 70 85 0.3
 2.5 1 69 85 0.3
 2.75 1 67 85 0.3
 3.0 1 65 85 0.3
 3.25 1 63 85 0.3
 3.5 1 62 85 0.3
 3.75 1 60 85 0.5

ORNATE Example 4 (Preset/Patch ornate4/ornatex4):
... minoutdur (12) skiptime (0.5)
sndf (1) sndl (1) ming (30) maxg (90) mind (1.0) maxd (1.0)
phgrid (0) gpspace (1) gpsprange (1) amprise (0) contour (0)
multlo (1) multhi (1)
texture postornate 3 marimba ornatex4 ndforn4.txt 21 0.5 1 1 30 90 1 1 0 1 1 0
0 1 1 -a0.75

What we hear is a dense texture of rising and falling scale pattern spaced at the interval of a
third. The density of overlap has led to overload, so the attenuation parameter [-a] is also used.
Fortunately, the program itself calculates the attenuation which may be needed and suggests a
figure to the user.

There are two methods by which the overlaps can be achieved.

1. The most direct (as above) is to create only one node and adjust the skip time. Our
ornament in this case is 4 seconds long, so a skiptime of 4 would cause regular repeats of
the whole ornament on the beat without overlap or gap. When we reduce skiptime to 0.5,
the ornament begins again at MIDI note 60 at the same time that the first one is playing
MIDI note 63 (at 0.5 sec), thus creating the interval of a third. The original and repeated
ornaments will proceed upwards in thirds. However, after another ½ second, another
ornament will start, creating a whole texture of thirds out of the phased ornament. A
skiptime of 0.25 will (with this ornament) produce 2nds and 1.0 will result in 5ths, and so it
goes.

2. The second method involves creating more than one node, which necessarily have to be at
different times. If in this case both were at MIDI note 60 and the second node began at
0.5, with skiptime set to 4.0 (full ornament duration), we will hear the ornament begin
again after half a second and produce thirds. No additional ornament repeats will come in,
so we will hear the second one end by itself, but the whole sequence will repeat after 4
seconds until the specified outdur is reached. There will be a slight overlap at the repeats
of the whole node sequence because of the second ornament starting later. This method
gives more control over density and the pitch level of each repeat.

If we want to make use of the tempo control as well (mult), we might also want to adjust
skiptime to reflect the new tempo in order to preserve the same time relationships. Otherwise,
the ornament(s) will play at different speeds, but the skiptime will stay the same, which will alter
the timing relationship of the ornaments as the underlying node sequence repeats.

Preserving time relationships while using a time-varying tempo can be improved by multiplying
the desired skiptime by the mult factor. When a tempo range is used things do seem to get out of
step, but it is possible to keep things somewhat more in step when breakpoint files are used: the
breakpoint times are matched in the skiptime file, and its values are multiplied by the
corresponding mult factor.

file:///E:/CDP/DOCS/!PRINT/txsnds/ornatex4.mp3

I had hoped that the phased ornaments would keep perfectly in step while the tempo waxed and
waned, but this does not appear to be happening, so there does seem to be some degree of
offsetting taking place as well.

Here are some further experiments you can carry out with the timing of the ornament. The
following are suggested alterations to the (command line) parameters as given for Example 3 in
ornexs.bat with the note data file ndforn4.txt as above.

time-varying skiptime – oex3skip.brk

 0 4
 12 0.5

sets a skiptime of 4 at time 0 and 0.5 (creates the 3rds) at time 12. We hear a full run of
the ornament by itself; the ornament begins again, and then the first few notes of the next
run come in a little before the end of the first, and subsequent repeats move the overlap
forward until the 0.5 time mark is reached.

time-varying tempo: accel – both the low and high tempo parameters use the same
breakpoint data: oex3mulo/hi.brk:

 0 1
 12 0.5

Thus we have 1 (no change) at time zero and 0.5 (twice as fast) at time 12; skiptime is
reset to 4 as above. We hear a gradual speedup during the course of the output soundfile
as the ornaments repeat (without overlap).

time-varying tempo: Accel/decel – Similarly, moving from 1 at time 0 to 0.5 at time 6
and back to 1 and time 12 will result in an accel/decel over the course of the output
soundfile: revised oex3mulo/hi:

 0 1
 6 0.5
 12 1

We hear the ornaments move faster-slower, but also notice that the time between the
ornaments appears to alter. This paradoxically is because the skip time is constant. What is
happening is that the faster ornaments take less time and end sooner, but the next run is
still set to begin after 4 seconds, so we have longer and shorter periods of silence,
although the actual time between repeats is staying the same.

combining time-varying tempo with overlaps set by the skiptime: revised
oex3skip.brk:

 0 4
 6 0.5
 12 4

Now we hear the ornaments overlap in a complex way (notes are not in sync) as the time-
varying skiptime gradually moves the overlap forward from 4 seconds and back again.

skip times adjusted by tempo ratio – To get a better (not not perfect) preservation of
ornament overlap relationships while changing tempo, we multiply the skip time values by the
tempo factors. Let's see what happens when we do this with the two previous experiments:

 [oex3skip.brk * oex3mulo/hi = new skiptime]
 0 4 * 1 = 4
 6 0.5 * 0.5 = 0.25
 12 4 * 1 = 4

Now the skiptime is reduced more in step with the tempo. We hear not a perfect
synchronisation, but considerably closer temporal relationships than before.

sustained tones within ornaments – Try using the horn.mp3 source and adding a 2 second
C-60 at the start (bottom) of the scale and a 2 second C-72 at the top. This introduces a
contrapuntal dimension which further illustrates potential applications, esp. within the context of
music based on harmonic fields.

mixed rhythms – Ornaments with more varied rhythmic contents open up the possibility of a
more strongly shaped gestural and motivic music.

End of TEXTURE ORNATE / PREORNATE / POSTORNATE

TEXTURE TIMED – A texture with events constrained
to a rhythmic template and pitches selected at
random from a pitch range or a Harmonic Field/Set;
one or more input sounds

Usage

texture timed mode infile [infile2...] outfile notedata outdur skiptime
sndfirst sndlast mingain maxgain mindur maxdur minpich maxpich
[-aatten] [-pposition] [-sspread] [-rseed] [-w]

Modes

1 On a given harmonic field
2 On changing harmonic fields
3 On a given harmonic set
4 On changing harmonic sets
5 None

Parameters

infile – input soundfile to use as source material
infile2 ... – optional soundfile(s) to use as additional inputs
outfile – output soundfile
notedata – textfile, containing:

1. assumed MIDI 'pitch' of each input sound, specified on the 1st line (60=original pitch)
2. followed by a times NOTELIST, specified thus:

#N (where N is the number of events in the notelist).
This is followed by N lines to define a rhythmic template in the format:
time (secs) infile_no pitch (MIDI) amp (MIDI) dur (secs) NB: Only the times of the
motif are active, although pitch and loudness must also be specified (arbitrary values
are OK); durations may be 0.
the specified times within the motif must increase

3. followed (optionally) by another notelist to specify a harmonic field or set (not used in
Mode 5).

these begin with #N (where N is the number of events in the notelist). This also acts
as a 'separator', enabling the program to know where the timed motif ends and the
harmonic field or set begins.
in the list of note events, all start times will be zero for a given harmonic field or set
(Modes 1 and 3).
for Modes 2 and 4 give later start times for the changing harmonic field(s) or set(s).

Form: MPV/T/–/– Form: MPV/T/HF-S/–

Mode 5 format Comments Modes 1-4 format Comments

60 MIDI pitch value(s) 60 MIDI pitch value(s)

#N No. of lines to
follow #N No. of lines to follow

time instr pitch amp
dur List of times time instr pitch amp

dur List of times

 #N No. of lines to follow

 time instr pitch amp
dur

List of Harmonic
Field/Set

outdur – minimum duration of the outfile
skiptime – time between repetitions of timing motif in the note data file (from the end of one
motif to the beginning of the next; NB: cannot produce overlaps with values shorter than the
motif itself)
sndfirst, sndlast – first and last soundfiles to use from a list of soundfiles for input (Range: 1 to
the number of sounds)
mingain, maxgain – minimum and maximum level of input sounds (Range: 1 to 127; Default: 64
and 64)
mindur, maxdur – minimum and maximum duration of events in texture
minpich, maxpich – minimum and maximum pitch (MIDI note value)
-aatten – overall attenuation of the output
-pposition – centre of sound output image (Range: 0 to 1, where 0 is Left and 1 is Right;
Default: 0.5)
-sspread – spatial spread of texture events (Range: 0 to 1, where 1 is full spread)
-rseed – the same seed number will produce the same result on rerun (Default: 0, where 0 is
different result each time)
-w – always play whole input sound, ignoring duration values

Understanding the TEXTURE TIMED Process

TEXTURE TIMED repeats a series of notes in random order but locked into a defined rhythmic
template.

All the examples for TEXTURE TIMED can be made by running timedexs.bat from the
DOS prompt. The soundfiles produced can be deleted with timeddel.bat.

The key to this process lies in realising that the first part of the note data file consists of note
events in which only the onset timing is relevant (the other three fields need something in
them, however, 1 for the instr_no and usually zeros for the other fields). You are therefore
specifying a rhythmic template which can be filled with any sequence of pitches.

This template will draw upon the parameter pitch range in random fashion in Mode 5. For
example, ndftim1.txt contains only:

 60
 #6 (rhythmic template definition)
 0.00 1 0 0 0
 0.34 1 0 0 0
 0.67 1 0 0 0
 1.00 1 0 0 0
 1.50 1 0 0 0
 1.75 1 0 0 0

TIMED Example 1 (Preset/Patch timed1/timedex1):
sndfirst (1) sndlast (1) mingain (24) maxgain (84)
mindur (0.2) maxdur (1.0) minpich (48) maxpich (84)
texture timed 5 marimba timedex1 ndftim1.txt 12 2.0 1 1 24 84 0.2 1.0 48 84

We hear the wide pitch range from which the notes for the rhythmic motif are selected. We also
notice that skiptime is different. Here skiptime is the time between statements of the
rhythmic motif/template. Thus we hear a long gap of two seconds between repeats because
skiptime = 2.0 sec. Thus skiptime in TEXTURE TIMED begins after the end of the motif.

This is not like the skiptime in TEXTURE ORNAMENT, where skiptime is the time between repeats
of the whole Nodal Substructure. Skiptime begins at the start time of the last Node. Thus, in
TEXTURE ORNAMENT a 2 second ornament with a 2 second skiptime leads to a repeat without a
gap. Also, where a skiptime less than the ornament duration results in overlaps. Here in
TEXTURE TIMED the skiptime is the time between repetitions of the whole rhythmic template
definition and there is no mechanism for creating overlapping rhythmic motifs (times less than 0
are not allowed).

In Modes 1-4, the notes are randomly selected from only the pitches in a specified Harmonic
Field/Set. In the latter case, you need an additional notelist in the note data file.

EXAMPLE 2. The following example (ndftim2.txt) makes clear how to do this (note the absence
of pitch data in the list of times, and the identical (0.0) start times in the harmonic field/set note
list):

 60
 #5 (rhythmic template definition)
 0.00 1 0 0 0
 0.25 1 0 0 0
 0.75 1 0 0 0
 1.00 1 0 0 0
 1.50 1 0 0 0
 #6 (harmonic field/set definition)
 0.0 1 60 0 0 (omitted in Mode 5)
 0.0 1 62 0 0
 0.0 1 65 0 0
 0.0 1 67 0 0
 0.0 1 70 0 0
 0.0 1 72 0 0

The above note data file is run with the following set of parameters, using Mode 3.

file:///E:/CDP/DOCS/!PRINT/txsnds/timedex1.mp3

TIMED Example 2 (Preset/Patch timed2/timedex2):
... outdur (12) skiptime (2.0)
sndfirst (1) sndlast (1) mingain (24) maxgain (84)
mindur (0.2) maxdur (1.0) minpich (48) maxpich (84)
texture timed 3 marimba timedex2 ndftim2.txt 12 2.0 1 1 24 84 0.2 1.0 48 84

EXAMPLE 3 - quick note gestures on a harmonic grid.
The 'b' example uses Mode 1 to open the texture out to other octaves.

ndftim3.txt
 60
 #17 (rhythmic template)
 0.00 1 0 0 0
 0.05 1 0 0 0
 0.10 1 0 0 0
 0.15 1 0 0 0
 0.20 1 0 0 0
 0.25 1 0 0 0
 0.30 1 0 0 0
 0.35 1 0 0 0
 0.40 1 0 0 0
 0.45 1 0 0 0
 0.50 1 0 0 0
 1.00 1 0 0 0
 1.50 1 0 0 0
 1.60 1 0 0 0
 1.70 1 0 0 0
 1.80 1 0 0 0
 1.90 1 0 0 0
 #5 (Harmonic Field/Set)
 0.0 1 48 0 0
 0.0 1 50 0 0
 0.0 1 53 0 0
 0.0 1 55 0 0
 0.0 1 58 0 0

TIMED Example 3a/b (Preset/Patch timed3a, &b/timedex3a, &b):
... outdur (12) skiptime (0.1)
sndfirst (1) sndlast (1) mingain (40) maxgain (80)
mindur (0.4) maxdur (1.0) minpich (48) maxpich (84)
texture timed 3 marimba timedex3a ndftim3.txt 12 0.1 1 1 40 80 0.4 1.0 48 84
texture timed 1 marimba timedex3b ndftim3.txt 12 0.1 1 1 40 80 0.4 1.0 48 84

We hear the rapid flows constrained to the C-D-F-G-Bb harmonic grid. In the absence of
amplitude shaping, the ear inevitably begins to hear the longer notes at time 0.5 and 1.0 as the
main foci, with the fast 5 .1 and faster 10 0.05 durations flowing around them. The 'b' example
using Mode 1 opens out the octaves and creates a richer, warmer texture.

file:///E:/CDP/DOCS/!PRINT/txsnds/timedex2.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/timedex3a.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/timedex3b.mp3

Musical Applications

TEXTURE TIMED requires a very specific set of note event timings, and yet makes its note
selections randomly. It is therefore it is well suited to to slower and very distinctive rhythmic
ideas.

The random reworking of the note selections can be a bit too obvious, however, so, to mitigate
this, you might consider using longer note durations, a fairly large and sonorous harmonic field
or set, and possibly several input soundfiles.

Alternatively, a vigorous texture of fast, repeated rhythms can be obtained with very closely
placed timings and a skiptime equal to the length you want the note of the last rhythmic motif
note event to have. Then the next motif will begin with a gap. If skiptime is near zero (min
skiptime is 0.000002), there is no time allowance for the last note event of the motif, and the
last note of one motif and the first of the next motif will be virtually simultaneous.

End of TEXTURE TIMED

TEXTURE TGROUPED – A texture with the onsets of
separate internally shaped event groups constrained
to a rhythmic template, with pitches drawn from a
pitch range or a Harmonic Field/Set; one or more
input sounds

Usage

texture tgrouped mode infile [infile2 ..] outfile notedata outdur skip
sndfirst sndlast mingain maxgain mindur maxdur minpich maxpich
phgrid grpspace gpsprange amprise contour
gpsizelo gpsizehi gppacklo gppackhi gpranglo gpranghi
[-aatten] [-pposition] [-sspread] [-rseed]
[-w] [-d] [-i]

Modes

1 On a given harmonic field
2 On changing harmonic fields
3 On a given harmonic set
4 On changing harmonic sets
5 None

Parameters

infile – input soundfile to use as source material
infile2 ... – optional soundfile(s) to use as additional inputs
outfile – output soundfile
notedata – textfile, containing:

1. assumed MIDI 'pitch' of each input sound, specified on the 1st line (60=original pitch)
2. followed by a times NOTELIST, specified thus:

#N (where N is the number of events in the notelist).
This is followed by N lines to define a rhythmic template in the format:
time (secs) infile_no pitch (MIDI) amp (MIDI) dur (secs) NB: Only the times in the
template are active, although pitch and loudness must also be specified (arbitrary
values are OK); durations may be 0.
times in the template must increase

3. followed (optionally) by another notelist to specify a harmonic field or set (not used in
Mode 5):

these begin with #N (where N is the number of events in the notelist). This also acts
as a 'separator', enabling the program to know where the time template ends and the
harmonic field or set begins.
in the list of note events, all start times will be zero for a given harmonic field or set
(Modes 1 and 3).
for Modes 2 and 4 give later start times for the changing harmonic field(s) or set(s).

Form: MPV/T/–/– Form: MPV/T/HF-S/–

Mode 5 format Comments Modes 1-4 format Comments

60 MIDI pitch value(s) 60 MIDI pitch value(s)

#N No. of lines to
follow #N No. of lines to follow

time instr pitch amp
dur List of times time instr pitch amp

dur List of times

 #N No. of lines to follow

 time instr pitch amp
dur

List of Harmonic
Field/Set

outdur – minimum duration of the outfile
skip – time between repeats of timing motif in notedata, i.e., between runs of the 'line'
substructure notelist
sndfirst, sndlast – first and last soundfiles to use from a list of soundfiles for input (Range: 1 to
the number of sounds)
mingain, maxgain – minimum and maximum level of input sounds (Range: 1 to 127; Default: 64
and 64)
mindur, maxdur – minimum and maximum duration of events in texture
minpich, maxpich – minimum and maximum pitch (MIDI note value)
phgrid – a timegrid in milliseconds applying WITHIN the groups (Range: 0.0 to 1000.0)
gpspace – spatialisation of event-groups (Range: 0 to 5; Default: 1)

0 no change
1 scattered (Default)
2 groups will move towards where the event is
3 motifs move away from where the event is
4 groups follow the texture motion from Left to Right
5 groups follow the texture motion from Right to Left

gpsprange – spatial range of event-groups (Range: 0 to 1; Default: 1)
amprise – amplitude change within groups (Range: 0 to 127; Default: 0)
contour – amplitude contour of groups (Range: 0 to 6; Default: 0)

0 mixture of the other types (Default)
1 crescendo
2 flat (no change)
3 decrescendo
4 crescendo or flat
5 crescendo or decrescendo
6 decrescendo or flat

gpsizelo, gpsizehi – smallest & largest numbers of events in the groups
gppacklo, gppackhi – shortest & longest time between event-onsets in the groups
gpranglo, gpranghi – minimum & maximum pitch range of the groups OR, for harmonic
field/sets, the range of notes within the field to use
-aatten – overall attenuation of the output
-pposition – centre of sound output image (Range: 0 to 1, where 0 is Left and 1 is Right;
Default: 0.5)
-sspread – spatial spread of texture events (Range: 0 to 1, where 1 is full spread)
-rseed – the same seed number will produce the same result on rerun (Default: 0, where 0 is
different result each time)
-w – always play whole input sound, ignoring duration values

-d – fixed timestep between group notes
-i – each group is not each confined to a fixed instrument (Default: fixed)

Understanding the TEXTURE TGROUPED Process

TEXTURE TGROUPS is a natural (and wonderful) development of the rhythmic template idea in
TEXTURE TIMED. In this case, the template times replace the packing parameter as the time-
onsets of each group. Thus the groups can not only follow one another at regular time onsets,
but these onsets can be have a defined rhythm. The groups themselves are shaped just as they
are in TEXTURE GROUPED.

Once the idea is clear that the time-onsets of each group follow the rhythmic template defined in
the first part of the note data file, understanding TGROUPED follows easily. We shall illustrate this
by using the parameters in Mode 5 to make the rhythmic template audible, and then 'populate' it
with groups.

All the examples for TEXTURE TGROUPED can be made by running tgrouexs.bat from
the Console prompt. The soundfiles produced can be deleted with tgroudel.bat.

TGROUPED Example 1a

The first example sets out the rhythmic template in the note data file ndftgr1.txt, which is in fact
an exact copy of ndftim1.txt used with TEXTURE TIMED. This now familiar rhythm is made
completely audible by having a 'group' of only one event (gpsizelo, gpsizehi, gpranglo and
gpranghi are all = 1). Here is the data:

 [ndftgr1.txt]
 60
 #5
 0.00 1 0 0 0
 0.25 1 0 0 0
 0.75 1 0 0 0
 1.00 1 0 0 0
 1.50 1 0 0 0

TGROUPED Example 1a (Preset/Patch tgrouped1a/tgrouex1):
... minoutdur skiptime
snd1st sndlast mingain maxgain mindur maxdur minpch maxpch
phgrid grpspace gpsprange amprise contour
gpsizelo gpsizehi gppaklo gppakhi gppranglo gppranghi
[-aatten -ppos -ssprd -rseed -w]
texture tgrouped 5 marimba tgrouex1a ndftgr1.txt 12 2.0 1 1 30 60 0.3 0.6 48
84 0 1 1 0 0 1 1 100 200 1 1

We hear the defined rhythm over two beats very clearly, because only one note is playing each
of the rhythmic durations (the grpsize range is 1). The pitches are widely spaced because
selected (at random) from a 3-octave pitch range. There is a two second pause (skiptime)
between repeats of the rhythmic template.

file:///E:/CDP/DOCS/!PRINT/txsnds/tgrouex1a.mp3

TGROUPED Example 1b

Using the same note data file, we now increase the grpsize range to 3, using 3 for both low and
high. Thus all the pitches which previously had 1 note on them, will now have three.

TGROUPED Example 1b (Preset/Patch tgrouped1b/tgrouex1):
(In Sound Loom use tgrouex1, making the parameter changes described below.)
... minoutdur skiptime
snd1st sndlast mingain maxgain mindur maxdur minpch maxpch
phgrid grpspace gpsprange amprise contour
gpsizelo gpsizehi gppaklo gppakhi gppranglo gppranghi
[-aatten -ppos -ssprd -rseed -w]
texture tgrouped 5 marimba tgrouex1b ndftgr1.txt 12 2.0 1 1 40 80 0.4 1.0 48
84 0 1 1 0 0 3 3 166 167 1 1

Group size high and low are reset to 3. The group packing is set between 166 and 167
milliseconds. In the context of this musical example, this corresponds to the duration of a
semiquaver (16th note) triplet. We also make the example a little louder by changing min, max
event gain to 40 and 80. We hear the triplets on each note – but notice that all the triplets have
the same overall duration of one quaver (8th note). Thus the triplets which begin on semiquaver
durations of the timing template will overlap with those which begin a semiquaver later.

TGROUPED Example 1c

Now we make things more variable, with the number of notes in each group ranging from 5 to 10
(grpsize), the packing between group note events ranging between 50 and 100 ms (grppak) and
the number of pitches taken from the pitch range widening from 1 in the above 'a' and 'b'
examples to a range of 3 to 10 (gpranghi).

TGROUPED Example 1c(Preset/Patch tgrouped1c/tgrouex1):
(In Sound Loom use tgrouex1, making the parameter changes described above.)
... minoutdur skiptime
snd1st sndlast mingain maxgain mindur maxdur minpch maxpch
phgrid grpspace gpsprange amprise contour
gpsizelo gpsizehi gppaklo gppakhi gppranglo gppranghi
[-aatten -ppos -ssprd -rseed -w]
texture tgrouped 5 marimba tgrouex1c ndftgr1.txt 12 2.0 1 1 40 80 0.4 1.0 48
84 0 1 1 0 0 5 10 50 100 3 10

We hear a much more fluid texture of overlapping events. While we may sense some variation
in density, one side effect of the ranges used is that the onsets of the rhythmic template can no
longer be easily perceived.

TGROUPED Example 1d

The final version of this parameter set simply reduces the skiptime to ½ a second. This draws the
repeats much closer together, thus increasing the overlap of the groups as they play themselves
out, even though the rhythmic templates themselves do not overlap.

file:///E:/CDP/DOCS/!PRINT/txsnds/tgrouex1b.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/tgrouex1c.mp3

TGROUPED Example 1d(Preset/Patch tgrouped1d/tgrouex1):
(In Sound Loom use tgrouex1, making the parameter changes described above.)
... minoutdur skiptime
snd1st sndlast mingain maxgain mindur maxdur minpch maxpch
phgrid grpspace gpsprange amprise contour
gpsizelo gpsizehi gppaklo gppakhi gppranglo gppranghi
[-aatten -ppos -ssprd -rseed -w]
texture tgrouped 5 marimba tgrouex1d ndftgr1.txt 12 0.5 1 1 40 80 0.4 1.0 48
84 0 1 1 0 0 5 10 50 100 3 10

We hear a rapid, fluid texture, in which the random element has become prominent.

Musical Applications

We now have a fairly good idea of what TIMED GROUPS is all about. We can try for a different
range of effects by making use of harmonic fields or sets to constrain the random dimension.
Ndftgr2.txt adds a harmonic field to a new and simpler timegrid.

 60
 #4
 0.00 1 0 0 0
 0.50 1 0 0 0
 3.00 1 0 0 0
 4.50 1 0 0 0
 #7
 0.0 1 48 0 0
 0.0 1 53 0 0
 0.0 1 58 0 0
 0.0 1 63 0 0
 0.0 1 68 0 0
 0.0 1 73 0 0
 0.0 1 78 0 0

TGROUPED Example 2(Preset/Patch tgrouped2/tgrouex2):
... minoutdur skiptime (0.5)
snd1st (1) sndlast (1) mingain (40) maxgain (70) mindur (0.25) maxdur (0.75)
minpch (48) maxpch (84)
phgrid (0) grpspace (1) gpsprange (1) amprise (0) contour (0)
gpsizelo (7) gpsizehi (28) gppaklo (75) gppakhi (150) gppranglo (1) gppranghi (7)
[-aatten -ppos -ssprd -rseed -w]
texture tgrouped 3 marimba tgrouex2 ndftgr2.txt 21 0.5 1 1 40 70 0.25 0.75 48
84 0 1 1 0 0 7 28 75 150 1 7

We hear repeated notes, arpeggios on perfect 4ths, something that sounds like permutations on
2 or 3 pitches, some dyads (2-note chords), varying speeds. Let's look more closely at the
various settings:

A new time template spreads out the onsets.

file:///E:/CDP/DOCS/!PRINT/txsnds/tgrouex1d.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/tgrouex2.mp3

Mode 3 is used so that only the pitches defined in the harmonic set are used. Arpeggios along
stacked 4ths are frequent. If Mode 1 is used, it is interesting to note that the inclusion of different
octaves also has the effect of enabling adjacent pitches to be used, enriching the texture, but
reducing the clarity of the defined harmonic grid.

The skiptime of 0.5 relates to the time template. The last time is at 4.5 (sec). Adding 0.5 to
this = 5.0, so that the next sequence will begin 'on the beat' at 5 sec.

The note duration range of 0.25 to 0.75 concerns how much of the input soundfile to allow to
play, which produces shorter and longer note values, the latter allowing in a bit of resonance.
Note duration ('sustain') cannot be longer than the input soundfile.

The groupsize range moves between 7 and 28 notes per group. This will result in some groups
which end well within before the next timegrid onset, and others which will still be playing out
their notes when the next timegrid onset comes: i.e., overlaps will occur, in this case producing
dyads. These dyads may be perfect 4ths, but other intervals may occur. It all depends on the note
selected for the start of the group.

The faster and slower pacing of the notes in the groups results from the internal group packing
range of 75 to 150 ms.

The groups vary nicely between repeated notes and arpeggios because the group pitch range
goes from 1 to 7 notes of the harmonic field.

End of TEXTURE TGROUPED

TEXTURE TMOTIFS/MOTIFSIN – A texture with the
onsets of fully user-specified motifs constrained to a
rhythmic grid and attached to pitches drawn from a
pitch range or from a Harmonic Field/Set; one or
more input sounds

Usage

texture tmotifs/tmotifsin mode infile [infile2 ..] outfile notedata outdur skip
sndfirst sndlast mingain maxgain minpich maxpich
phgrid grpspace gpsprange amprise contour multlo multhi
[-aatten] [-pposition] [-sspread] [-rseed]
[-w] [-d] [-i]

Modes

1 On a given harmonic field
2 On changing harmonic fields
3 On a given harmonic set
4 On changing harmonic sets
5 None [not used by TMOTIFSIN]

Parameters

infile – input soundfile to use as source material
infile2 ... – optional soundfile(s) to use as additional inputs
outfile – output soundfile
notedata – textfile, containing:

1. assumed MIDI 'pitch' of each input sound, specified on the 1st line (60=original pitch)
2. followed by a times NOTELIST, specified thus:

#N (where N is the number of pitches in the notelist).
This is followed by N lines in the format:
time (secs) infile_no pitch (MIDI) amp (MIDI) dur (secs). Only time is active.
Pitch, amp and dur are inactive fields in TEXTURE TMOTIFS.
different times must be given, and they must increase; all 0's for chords are not
allowed.

3. Now you need an additional set of lines for the motif definition.
these are also introduced by the number of lines (#N, which acts as a separator).
This is followed by N lines in the format:
time (secs) infile_no pitch (MIDI) amp (MIDI) dur (secs). All fields are active to
define the motif.

4. Optionally there may be a Harmonic Field/Set definition in the usual format, omitted in
Mode 5. If omitted, the motif definition occupies the second section of the note data file.

Form: MPV/T/M/– Form: MPV/T/HF-S/M

Mode 5 format Comments Modes 1-4 format Comments

60 MIDI pitch value(s) 60 MIDI pitch value(s)

#N No. of lines to
follow #N No. of lines to follow

time instr pitch amp
dur List of times time instr pitch amp

dur List of times

#N No. of lines to
follow #N No. of lines to follow

time instr pitch amp
dur List of Motifs time instr pitch amp

dur
List of Harmonic

Field/Set

 #N No. of lines to follow

 time instr pitch amp
dur List of Motifs

outdur – minimum duration of the outfile
skip – time between repeats of timing motif in notedata, i.e., between runs of the 'line'
substructure notelist
sndfirst, sndlast – first and last soundfiles to use from a list of soundfiles for input (Range: 1 to
the number of sounds)
mingain, maxgain – minimum and maximum level of input sounds (Range: 1 to 127; Default: 64
and 64)
minpich, maxpich – minimum and maximum pitch (MIDI note value)
phgrid – a timegrid in milliseconds applying WITHIN the motifs (Range: 0.0 to 1000.0)
gpspace – spatialisation of event-groups (Range: 0 to 5; Default: 1)

0 no change
1 scattered (Default)
2 motifs will move towards where the event is
3 motifs move away from where the event is
4 motifs follow the texture motion from Left to Right
5 motifs follow the texture motion from Right to Left

gpsprange – spatial range of event-groups (Range: 0 to 1; Default: 1)
amprise – amplitude change within motifs (Range: 0 to 127; Default: 0)
contour – amplitude contour of groups (Range: 0 to 6; Default: 0)

0 mixture of the other types (Default)
1 crescendo
2 flat (no change)
3 decrescendo
4 crescendo or flat
5 crescendo or decrescendo
6 decrescendo or flat

multlo, multhi – smallest & largest multiplier of total input duration of motif
-aatten – overall attenuation of the output
-pposition – centre of sound output image (Range: 0 to 1, where 0 is Left and 1 is Right;
Default: 0.5)
-sspread – spatial spread of texture events (Range: 0 to 1, where 1 is full spread)
-rseed – the same seed number will produce the same result on rerun (Default: 0, where 0 is
different result each time)
-w – always play whole input sound, ignoring duration values

-d – motif notes all have the same duration as the timing note
-i – motif is not each confined to a fixed instrument (Default: fixed)

Understanding the TEXTURE TMOTIFS Process

TEXTURE TMOTIFS enables us to create fully defined motifs which begin to play according to the
times in a rhythmic template. These will draw their pitches either from a pitch range (Mode 5) or
from a Harmonic Field/Set (Modes 1 - 4).

In TGROUPED we found that the rhythmic template repeated without very much definition
because we could not set the amplitude at specific time points. TMOTIFS enables us to create
fully defined musical figures, thus providing a useful spectrum in the 'timed' group of functions
from random to fully specified.

All the examples for TEXTURE TMOTIFS can be made by running
tmotiexs.bat from the DOS prompt. The soundfiles produced can be deleted
with tmotidel.bat.

Our first example, then, simply creates a 6-note figure which repeats on a rhythmic template of
compressing durations: 3-2-1-0.5 seconds, giving us the onset template of onsets at 0, 3, 5, 6,
and 6.5 seconds. Ndftmo1.txt sets this template and an easily recognisable musical figure:

 60
 #5
 0.0 1 0 0 0
 3.0 1 0 0 0
 5.0 1 0 0 0
 6.0 1 0 0 0
 6.5 1 0 0 0
 #6
 0.000 1 63 70 0.4
 0.167 1 62 65 0.3
 0.334 1 60 60 0.3
 0.500 1 62 65 0.4
 0.667 1 60 60 0.3
 0.834 1 59 55 0.3

TMOTIFS Example 1 (Preset/Patch tmotif1/tmotiex1):
... outdur (21) skiptime (3.5)
snd1st (1) sndlast (1) mingain (40) maxgain (80)
minpich (48) maxpich (84)
phgrid (0) gpspace (1) gpsprange (1) amprise (0) contour (0)
multlo (1) multhi (1)
[-aatten -ppos -ssprd -rseed -w -d -i]
texture tmotifs 5 marimba tmotiex1 ndftmo1.txt 21 3.5 1 1 40 80 48 84 0 1 1 0
0 1 1

We hear a dynamically shaped semi-quaver sextuplet motif get closer together and, because
each motif is 1 second long, there is an overlap of ½ second at 6.5 seconds. Longer note
durations in the note data file (up to the length of the input soundfile) will produce more
resonance due to a greater note event overlap within the motifs.

file:///E:/CDP/DOCS/!PRINT/txsnds/tmotiex1.mp3

Let's look at the time between repeats very closely, as it is musically useful to understand this
accurately. The skiptime parameter is the time between repetitions of the rhythmic template,
which Sound Loom refers to as the 'pause between line repeats'. This is calculated from the
onset of the last motif, i.e., the last of the timing template nodes. The program does not
take into account how long the motif is, so this skiptime pause does not begin at the end of the
last motif, but rather at its beginning. (If it did begin at the end, this would prevent any
overlapping of the last motif and the start of the next repetition of the template.)

The last motif in the Example 1 template begins at 6.5, lasts for 1 second and ends at 7.5. The
3.5 second skiptime pause therefore starts at 6.5 and ends at 10.0. Thus the repeat begins at 10
seconds. Suggestion: When counting this out while listening to the output soundfile, remember
to start the count at 0 as in the note data file so that your count will match the numbers in the
file.

Thus we could see that a skiptime pause of 0.5 seconds would cause the template to begin again
at 7.0 seconds, overlapping the last motif by ½ second. Try it! With longer and more
harmonically oriented motifs, this overlap potential can become musically significant.

The motif duration multiplier multlo/hi alters the speed of the motifs, but not of the timing
template. A range from 0.5 (twice as fast) to 2.0 (twice as slow) introduces more variety of
tempo into the output. Also note that it changes the overlaps considerably.

A second example introduces the use of a Harmonic Field/Set and seeks to play with the overlaps
which may occur. Ndftmo2.txt creates a timegrid equally spaced at ½ sec. and revises the motif
to form a 3 second arpeggio on various thirds. The harmonic set comprising pitches which belong
to the motif itself leads to transpositions which create intervals of 3rd as the 3 second motifs
overlap on a ½ second rhythmic template.

 60
 #5
 0.0 1 0 0 0
 0.5 1 0 0 0
 1.0 1 0 0 0
 1.5 1 0 0 0
 2.0 1 0 0 0
 #9
 0.0 1 52 60 0
 0.0 1 55 60 0
 0.0 1 58 60 0
 0.0 1 61 60 0
 0.0 1 63 60 0
 0.0 1 66 60 0
 0.0 1 68 60 0
 0.0 1 72 60 0
 0.0 1 75 60 0
 #18
 0.000 1 52 70 0.4
 0.167 1 55 65 0.3
 0.334 1 58 60 0.3
 0.500 1 55 65 0.4
 0.667 1 58 60 0.3
 0.834 1 61 55 0.3
 1.000 1 58 70 0.4

 1.167 1 61 65 0.3
 1.334 1 63 60 0.3
 1.500 1 61 65 0.4
 1.667 1 63 60 0.3
 1.834 1 66 55 0.3
 2.000 1 63 70 0.4
 2.167 1 66 65 0.3
 2.334 1 68 60 0.3
 2.500 1 66 65 0.4
 2.667 1 68 60 0.3
 2.834 1 72 55 0.3

TMOTIFS Example 2a/b (Preset/Patch tmotif2a, &b/ tmotiex2):
(In Sound Loom use tmotiex2, making the parameter changes described below to
create the 'b' example.)
... outdur (21) skiptime (0.5)
snd1st (1) sndlast (1) mingain (40) maxgain (80)
minpich (48) maxpich (84)
phgrid (0) gpspace (1) gpsprange (1) amprise (0) contour (0)
multlo (1) multhi (1)
[-aatten -ppos -ssprd -rseed -w -d -i]
texture tmotifs 3 marimba tmotiex2a ndftmo2.txt 21 0.5 1 1 40 80 48 84 0 1 1 0
0 1 1
texture tmotifs 3 marimba tmotiex2b ndftmo2.txt 21 0.75 1 1 40 80 48 84 0 1 1
0 0 1 1

We hear the motif rising repeatedly without a break. The skiptime of 0.5 sec. added to the final
time node of 2.0 sec means that the time pattern repeats starting at 2.5 sec. Thus the ½ second
time intervals is smoothly maintained. The similarity of motif and field in harmonic design leads
to the interval of a third sounding as a simultaneity as the motifs overlap. The 'b' example makes
only one change: 0.25 is added to the skiptime. This ¼ second offset starts to produce
semiquaver (16th note) offsets when the rhythmic template repeats.

As with MOTIFS and MOTIFSIN, the harmonic field or set is used in two different ways:

MOTIFS: just the first note of the motif is placed on the harmonic grid, with all the pitches
of the motif itself being accurately transposed from that reference point;
MOTIFSIN: all the notes of the motif are constrained to the harmonic grid, warping the
motif to do so.

Also see some further observations about starting off motifs on the same pitch each time.

Musical Applications

The range of possibilities in the TEXTURE set provides facilities for remarkably varied musical
situations. In particular, there is a balance between random selection and fully defined musical
figures. Always there are constraints within which random selections are made, such as
parameter ranges and harmonic fields or sets, and all of these can vary through time. In addition
you are not constrained to use the pitches of the tempered scale – fractional MIDI values will
give you any tuning you desire. Thus, while it is possible to duplicate MIDI sequencer type fully
defined pitch and rhythmic relationships, it is also possible to use the algorithmic potential of this
software to move beyond towards freer forms of texture design, designs often very

file:///E:/CDP/DOCS/!PRINT/txsnds/tmotiex2a.mp3
file:///E:/CDP/DOCS/!PRINT/txsnds/tmotiex2b.mp3

suitable for sounds of a more 'natural' character, i.e., with limited pitch content.

For example, you may move from a dense apparently unpitched texture, (using a very small
packing time and a wide pitch range, but with no harmonic field specified – Mode 5) then
gradually narrow the pitch range to (close to) a single pitch. In this way the unpitched band
becomes gradually focused on a pitch (provided your source material has some pitch content).
You can also take any sound of complex quality (e.g. speech) and by creating a very dense
texture by using a very small packing time, 'white out' the texture, producing a band of
undifferentiated noise. By varying the packing time you can then pass between the noise band
and a texture of voices.

Thus the DECORATED group defines a 'line' (nodal substructure), but the decorations themselves
are formed by (constrained) random selections. Complementing this is the ORNATE group, which
enables you to place fully defined figures ('ornaments') on this 'line', with the option to constrain
the pitches of the figure(s) to a harmonic grid.

Similarly, MOTIFS makes fully defined motifs possible, but the 'line' feature is removed. Thus the
motifs will begin either on a pitch selected at random from a pitch range, or selected at random
from a harmonic grid. In MOTIFS only the first pitch of the motif is 'forced' onto this grid, and in
MOTIFSIN, all the pitches of the motif are forced onto the grid, warping the figure if necessary to
do so.

TMOTIFS/TMOTIFSIN complements the 'line' feature of DECORATED and ORNATE with a timing
grid, so that the motifs can be made to begin at specified times. This opens up possibilities such
as controlled overlaps, variations in density, and interval control. The relationship between the
timing grid, the intervals in the harmonic grid, the intervals in the motif itself, the time between
the onset of the last motif on the grid and the rerun of the grid pattern (skiptime), and the
tempo control (the motif duration multiplier multlo/hi) – all affect the overall result and provide a
wonderfully flexible environment for designing musical textures.

Furthermore, as we are working in the context of sound transformation software, it will be
normal to apply the designs to inharmonic input soundfiles with little or no clearly defined pitch
content. In this case the timing and pitch contours control 'washes' of sound and timbral colour.

End of TEXTURE TMOTIFS / TMOTIFSIN

Last Updated 14 July 2015
Documentation: Archer Endrich, revised R. Fraser
© Copyright 1998-2015 Archer Endrich & CDP

