

CDP GRAIN Functions

(with Command Line Usage)

Granular Functions for soundfiles

(Names in brackets mean that these are separate programs. The others are sub-modules of REPITCH.)

ALIGN
Synchronise grain onsets in
2nd grainy sound with those in the 1st

ASSESS
Estimate best gate value for
grain extraction

COUNT
Count grains found in a sound (at given
gate and minhole values)

DUPLICATE
Duplicate grains in a grainy
sound

[GRAINEX]
Find grains in a sound and extend the area that contains them

GREV
Find and manipulate 'grains', using envelope troughs and zero-crossings

[NEWTEX]
Generate a texture of grains made from a source sound or sounds

NOISE_EXTEND
Find and time-stretch noise components in a sound

FIND
Locate timings of grain-onsets
in a grainy sound

OMIT
Omit a proportion of grains from a grainy
sound

REMOTIF
Change pitch and rhythm of
grains in a grainy sound

REORDER
Reorder grains in a grainy
sound

REPITCH
Repitch grains in a grainy
sound

REPOSITION
Reposition grain onsets
in a grainy sound

RERHYTHM
Change rhythm of grains in
a grainy sound

REVERSE
Reverse order of grains in
a grainy sound without reversing the grains themselves

R_EXTEND
'Time-stretch' natural sounds like the rolled 'rrr' in speech

TIMEWARP
Stretch (or shrink) the
duration of a grainy sound without stretching the grains themselves

[WRAPPAGE]
Granular reconstitution of one or more soundfiles over multi-channel space

ALSO

SEE:
MODIFY BRASSAGE

Granular reconstitution of a soundfile
MODIFY SAUSAGE

Granular reconstitution of several soundfiles scrambled together
GRAINMILL

Graphic program for BRASSAGE.

Note that a sound can be quickly granulated with
MODIFY BRASSAGE Mode 5:

modify brassage 5 infile outfile density

Use a density value of 1.0 or less, which will introduce gaps between the grains.

file:///E:/CDP/DOCS/!PRINT/cgromody.htm#BRASSAGE
file:///E:/CDP/DOCS/!PRINT/cgromody.htm#SAUSAGE
file:///E:/CDP/DOCS/!PRINT/cgrnmill.htm
file:///E:/CDP/DOCS/!PRINT/cgromody.htm#BRASSAGE

GRAIN ALIGN – Synchronise grain onsets in
2nd

grainy sound with those in the 1st

Usage

grain align infile1 infile2 outfile offset gate2
[-blen][-lgate] [-hminhole]
[-twinsize] [-x]

Parameters

infile1 – 1st input soundfile: provides
grain onset times

infile2 – 2nd input soundfile: provides
the actual grains to be re-timed

outfile – output soundfile

offset – add this value to all grain
timings

gate2 – minimum signal level to register grain in
infile2 (Range: 0 to 1)

-blen – maximum time between grains (Range: 1 to duration of infile)

-lgate – minimum signal level to register
grain in infile1 (Range: 0 to 1, Default 0.3)

-hminhole – minimum duration of holes between
grains (Minimum allowed value is 0.032 – the
Default)

-twinsize – gate level tracks the signal
level, as found with a window size of winsize milliseconds
(Range: 0.0 to duration of infile1)

0.0 turns off tracking

-x – ignore the last grain in the source

gate and gate2 may vary over time.

Understanding the GRAIN ALIGN Process

The timing of the grains of infile2 is made to match those of
infile1.

It may be unwise not to specify a value for the optional parameter
-lgate (gate level for infile1).

Musical Applications

If you achieve an effective grain timing for two sounds, GRAIN ALIGN
makes it possible to create
a subtle correspondence between the two
soundfiles.

For example, the fine attack-structure of the two sounds can be
synchronised, so that they
appear to pulse in parallel.

End of GRAIN ALIGN

GRAIN ASSESS – Estimate best gate value for
grain
extraction

Usage

grain assess infile

Parameters

infile – input soundfile in which to estimate a
useful gate value

Understanding the GRAIN ASSESS Function

GRAIN ASSESS is a simple utility to provide useful information
when using the GRAIN set of
programs. You just provide an
input soundfile and it scans the file, displaying a report
such as:

Maximum grains found = 21 at gate value 0.117100 and windowlen
50ms

The program is therefore assessing which gate value and
which windowlength value will result in
the most grains.
You can then use this information in other GRAIN programs.

Musical Applications

For example, even as simple a program as GRAIN COUNT gives you the
option to specify a gate
value. GRAIN ASSESS provides the
value that will produce the most grains, and you can take it
from
there. Windowlength also affects the number of grains found.
If it is too long, it may count
several grains as one, or if too short,
it may not find some of the grains.

End of GRAIN ASSESS

GRAIN COUNT – Count grains found in a sound (at
given gate and minhole values)

Usage

grain count infile [-blen][-lgate]
[-hminhole] [-twinsize] [-x]

Parameters

infile – input soundfile in which to count the grains

-blen – maximum time between grains (Range: 1 to duration of infile)

-lgate – required signal level for grain to be
seen (Range: 0 to 1; the Default is 0.3)

gate may vary over time.

-hminhole – minimum duration of holes between
grains (Minimum allowed value is 0.032 – the
Default)

-twinsize – gate level tracks the signal
level, as found with a window size of winsize milliseconds
(Range: 0.0 to duration of infile)

0.0 turns off tracking

-x – ignore the last grain in the source

Understanding the GRAIN COUNT Function

GRAIN COUNT displays the message: "N grains found at this gate
level."

Musical Applications

GRAIN COUNT provides a check on the granularity of a file, and also
on the gate level at which a
given number of grains is operational.

End of GRAIN COUNT

GRAIN DUPLICATE – Duplicate grains in a grainy
sound

Usage

grain duplicate infile outfile N [-blen] [-lgate][-hminhole] [-twinsize] [-x]

Parameters

infile – input soundfile

N – number of repetitions of each grain

-blen – maximum time between grains. (Range: 1 to duration of infile)

-lgate – required signal level for grain to be
seen (Range: 0 to 1; the Default is 0.3)

N and gate may vary over time.

-hminhole – minimum duration of holes between
grains (Minimum allowed value is 0.032 – the
Default)

-twinsize – gate level tracks the signal
level, as found with a window size of winsize milliseconds
(Range: 0.0 to duration of infile)

0.0 turns off tracking

-x – ignore the last grain in the source

Understanding the GRAIN DUPLICATE Process

This process makes N copies of each grain, proceding through
the infile grain by grain.

You are recommended to use GRAIN COUNT with the gate flag to
determine which gate level
works best with the file (produces a good
granulation of the source). This gate level should be
used with
GRAIN DUPLICATE. Not using it appears to produce anomalous results,
such as no
grain duplications and a long period of silence.

Musical Applications

The overall effect is that of rapid-fire repeats or a stuttering
effect, depending on the source.

End of GRAIN DUPLICATE

GRAIN FIND – Locate timings of grain-onsets
in a
grainy sound

Usage

grain find infile out-textfile [-blen] [-lgate] [-hminhole] [-twinsize] [-x]

Parameters

infile – input soundfile in which to find the grain-onsets

out-textfile – output textfile containing a list of times
in seconds at which each grain begins

-blen – maximum time between grains (Range: 1 to duration of infile)

-lgate – required signal level for grain to be
seen (Range: 0 to 1; the Default is 0.3)

gate may vary over time.

-hminhole – minimum duration of holes between
grains (Minimum allowed value is 0.032 – the
Default)

-twinsize – gate level tracks the signal
level, as found with a window size of winsize milliseconds
(Range: 0.0 to duration of infile)

0.0 turns off tracking

-x – ignore the last grain in the source

Understanding the GRAIN FIND Function

This function locates and writes to a text file the time in seconds at
which each grain begins.
Again, the effective gate level
determined with GRAIN COUNT should be used.

Musical Applications

Examination of this text file provides a way to check on the results
of the various GRAIN
functions which affect the grain timings. The data can be used to retime the grains in another
grainy sound. See GRAIN REPOSITION.

End of GRAIN FIND

GRAINEX EXTEND – Find grains in a sound, and
extend the area that surrounds them

Usage

grainex extend infile outfile wsiz trof plus stt end

Example command line to find and extend grain regions:

grainex extend in.wav out.wav 30 0.5 2.5 1.5 3.5

OR:

 WSIZ TROF PLUS STT END

grainex extend inf outf 5 0.5 5 0 1

Parameters

infile – input soundfile in which to find the grains

outfile – output soundfile

wsiz – size of window in milliseconds, which determines the size of the grains to find (Range:
1.81406 to file-length ÷ 3ms)

trof – acceptable trough depth, relative to adjacent peaks (Range: > 0 to < 1 – Soundshaper
default: 0.5 – see Note below)

(? gpcnt – number of grains to treat as a unit in the operations)

plus – how much duration to add to the source (Range: 0.000002 to 3600 secs)

stt – time of start of grain material within the source (Range: 0.0 to file-length in seconds)

end – time of end of grain material within the source (Range: 0 to file-length in seconds and >
stt)

Understanding the GRAINEX EXTEND Process

For GRAINEX, as with the other GRAIN functions, you will need a reasonably grainy sound as an
input, otherwise it won't be able to find any grains and you will probably see the message
"Insufficient valid troughs in the file".

GRAINEX extends an area containing grains, the start and end times being set by the user. The
grains are found by envelope troughs and zero-crossings.

When the above example command line was run with the input file count.wav, when the output
sound got to the number 'three', it was repeated several times before continuing on with the rest
of the count up to the number ten. The input sound was 8.066 seconds long, and the output was
18.866 seconds long, i.e., considerably more than the 2.5 seconds specified.

NOTE

It is possible to set trof too low. Being relative to the peak level, if the signal doesn't drop that
far in level, you may get the Error Message: "Insufficient grains to proceed" or "INSUFFICIENT
PEAKS IN THE FILE AREA SPECIFIED".

End of GRAINEX EXTEND

GRAIN GREV – Find and manipulate 'grains', using
envelope troughs and zero-crossings

Usage

grain grev 1 infile outfile wsiz trof gpcnt

grain grev 2 infile outfile wsiz trof gpcnt repets

grain grev 3-4 infile outfile wsiz trof gpcnt keep outof

grain grev 5 infile outfile wsiz trof gpcnt tstretch

grain grev 6 infile out_timesfile wsiz trof gpcnt

grain grev 7 infile outfile in_timesfile wsiz trof gpcnt

Example command line:

grain grev 2 infile outfile 10 0.5 4 3

Modes

1 REVERSE – the grain-units isolated are played in reverse order

2 REPEAT – gpcnt-sized units are repeated

3 DELETE – remove the specified number of units

4 OMIT – replace specified number of units with silence

5 TIMESTRETCH – the time expansion is happening in the troughs: the grains of sound are not
themselves stretched

6 GET – writes grain time-positions to a textfile

7 PUT – places grains in time according to textfile

Parameters

infile – input soundfile in which to count the grains

outfile – output soundfile produced by the program

out_timesfile – textfile produced by the program, containing times of grain positions

in_timesfile – textfile containg times at which the program is to place grains

wsiz – windowsize in milliseconds, determining the size of the grains to find

trof – the acceptable trough height, relative to adjacent peaks. Range: greater than 0 to less
than 1 (> 0 Range < 1)

gpcnt – ('groupcount') the number of grains to treat as a unit in the operations

repets – the number of repetitions of each unit

keep – outof – the number of units to keep, e.g., 3 out of 5

tstretch – the amount to timestretch the output (grains NOT stretched) Range: 0.01 to 100)

gpcnt, repets, keep and tstretch can vary over time.

Understanding the GRAIN GREV Process

This program was written to assist in separating the large-scale 'grains' in a stream of sound,
e.g. the syllables of speech. It can be a useful alternative to SFEDIT SYLLABLES, which is for the
precise manual editing of syllabic units.

The other 'grain' programs rely on a gate which searches for moments when the input sound falls
below a certain level, and then splices the sound at those points. This works fine when the sound
grains are fairly consistent (e.g. a sequence of pizzicato sounds).

However, the syllables of speech are usually quite different from one another. So the gating
procedure finds some good places to cut, and misses others. The 'grev' process does not depend
on setting a gate level. It simply looks for troughs (low points) in the envelope (at a suitable
timescale), then within those troughs, searches for a zero-crossing at the lowest point of the
signal in the trough.

Once it finds these it can separate the grains with zero-length splices.
The key thing is to set the
envelope window about three times smaller than the features (e.g. syllables) you want to tease
out.

Musical Applications

Designed for spoken words, this program enables you to play with syllabic units with remarkable
efficiency. Although similar to others in the GRAIN set, it gives direct control over the syllabic
content of speech.

Mode 2 reveals how this program works. The example command line given above has these
parameters: wsiz = 10 ms, trof = 0.5 (half-way can be a useful place to start with a parameter),
gpcnt = 4 (four grains to a group), and repets = 3 (repeat the 4-grain-units 3 times). When run,
we find that the syllables of the spoken text are, for the most part, clearly isolated and repeat
3 times each without overlaps. Thus the program is working effectively with the spaces between
the syllables.

That this is the case is also shown by Mode 5. When run with the same parameter values (the
last parameter being tstretch instead of repets, we find that the syllables do not repeat but are
more spaced out in time.

Modes 3 and 4 operate as expected, deleting grains or replacing them with silence. Mode 1 plays
back the isolated grains in reverse order, i.e., you hear syllabic fragments from the end of the file
first and proceed back to the beginning – but the text fragments themselves are 'forward' as
normal. Higher values for wsiz and gpcnt result in longer passages of the text treated as a unit,
while smaller values fragment the text more. It's a very odd effect.

Mode 6 provides a way to write grain-position times (shaped by the other parameters) to a file.
This file can then be used as input in Mode 7 with, e.g., another input sound or with different
values for the other parameters, thus achieving results that are partly shaped and partly
serendipitous.

Altogether, GRAIN GREV is a powerful tool with which to manipulate speech material. On a
deeper level, it can be used to musicalise speech and make formal connections with other shapes
in your composition.

End of GRAIN GREV

file:///E:/CDP/DOCS/!PRINT/cgroedit.htm#SYLLABLES

NEWTEX – Create a texture of grains made from a
source or sounds

Usage

newtex newtex 1 insndfile outsndfile transposes dur chans maxrange step spacetype [-ssplice] [-nnumber]
[-x]

 EXTRA OPTIONAL FLAGS (if spacetype>0):

[-rrotspeed] [-j] [-efrom -Etime] [-cto -Ctime]

newtex newtex 2 insndfile1 insndfile2 [insndfile3 ...] outsndfile dur chans maxrange step spacetype delay
[-ssplice] [-nnumber] [-x]
 EXTRA OPTIONAL FLAGS (if spacetype>0):

[-rrotspeed] [-j] [-efrom -Etime] [-cto -Ctime]

newtex newtex 3 insndfile1 [insndfile2 ...] outsndfile transposes dur chans maxrange step spacetype [-
ssplice] [-nnumber] [-x]
 EXTRA OPTIONAL FLAGS (if spacetype>0):

[-rrotspeed] [-j] [-efrom -Etime] [-cto -Ctime]

Example command line to create a combo grain texture :

newtex newtex 3 insndfile.wav outsndfile.wav 30 4 3 0.1 0 0 1.5 0.35 -s36

i.e.:

DUR CHANS MAXRANGE STEP SPACETYPE LOC AMB GSTEP SPLICE

30 4 3 0.1 0 0 1.5 0.35 36

This example takes short segments and scatters them randomly across the channels. Splice is
quite long to give the segments a softer attack. It works well in stereo too, but 4 or more
channels are worth generating to get a variety of segmentations. (The channels can be split,
possibly processed and then re-combined or re-mixed in various ways.)

Modes

1 The transpositions of insndfile are spread over N octaves and spatially, and fade in and out
randomly.

2 Insndfile is read at its original rate (i.e., no transpositions), spread spatially, and fades in and
out randomly.

3 Insndfile is read as 'drunken walks', spread spatially, and fades in and out randomly.

Parameters

insndfile(s) – input soundfile or soundfiles, depending on which Mode is used

outsndfile – the output textured soundfile

transposes – textfile containing a list of transposition ratios and relative levels, against time.

The data is a text file of lines of data.
Every line must have the same number of entries.
The first entry on each line is a time.
Times must start at zero and increase.
All EVEN-numbered entries are transposition levels.
Transpositions must increase from entry to entry.
All other ODD-numbered entries are transposition levels.
Levels should have values between -1 and 1.
Octave (transposition) values invert the phase of the source.

dur – the duration of the output sound

chans – the number of output channels

maxrange – In Mode 1 maxrange is the range in octaves of the transpositions of the input.

 In Mode 2 maxrange is the number of simultaneous soundings of any source soundfile.

step – the average time between changes to the stream-content of the output.

splice – the splice-lengths in milliseconds for component entry and exit

number – the number of components chosen for each event

delay – the time delay between identical components

loc – the locus (time-location) from which to read sound segments.

 NB: It is an important feature that loc is time-varying.

amb – the 'ambitus', i.e., the restricted time-range in milliseconds around the locus where reads
can begin.

 NB: It is an important feature that amb is time-varying.

 • TIP: Compare locus and ambitus with the parameters of the same name in EXTEND
DRUNK.

gstep – the maximum size of the random steps between one read start and the next read.

-x – 'Xclusive': change all components, as far as possible, from event to event
-j – 'Jump': all components are assigned to the same location for any one event, and then it
jumps to the next location

spacetype – the type of output spatialisation:

 0 Spatial position set at random.

 For 8-channel output only (assumes an 8-speaker 'ring' formation):

1. Positions alternate between Left and Right sides, but are otherwise random.
2. Positions alternate between Front and Back, but are otherwise random.
3. Rotating clockwise or anticlockwise.
4. Random permutations of all 8 channels.
5. As [4] plus all possible pairs of channels.
6. As [4] plus all possible meaningful small and large triangles.
7. As [4] plus square, diamond and all-at-once.

In types 4 to 7, all members of the permutation are used before the next permutation
starts.

8. Alternate between all-left and all-right.
9. Alternate between all-front and all-back.

10. Alternate between all-square and all-diamond.
11. Rotate triangle formed by loudspeakers 2-apart clockwise.
12. Rotate triangle formed by loudspeakers 3-apart clockwise.
13. Rotate triangle formed by loudspeakers 2-apart anticlockwise.
14. Rotate triangle formed by loudspeakers 3-apart anticlockwise.

file:///E:/CDP/DOCS/!PRINT/cgroextd.htm#DRUNK

EXTRA OPTIONAL FLAGS (only if spacetype>0):
rotspeed – rotation speed for certain spatialisation types

-efrom -Etime– 'Emerge': the sound emerges from channel from over time time at start

-cfrom -Ctime– 'Converge': the sound converges from channel to over time time at end

Flags with NO parameters must be placed AFTER any flags WITH parameters, on the
command line.
maxrange, step, number, loc, amb and gstep, can vary over time.

Understanding the NEWTEX Process

NEWTEX is a powerhouse of a program that combines aspects of MODIFY BRASSAGE, EXTEND
DRUNK and TEXTURE. It generates a (time-varying) texture from segments cut from a source
sound or sounds.

End of NEWTEX NEWTEX

file:///E:/CDP/DOCS/!PRINT/cgromody.htm#BRASSAGE
file:///E:/CDP/DOCS/!PRINT/cextend.htm#DRUNK
file:///E:/CDP/DOCS/!PRINT/cgrotext.htm

GRAIN NOISE_EXTEND – Find and timestretch noise
component in a sound

Usage

grain noise_extend infile outfile duration minfrq mindur maxdur [-x]

Parameters

infile – input soundfile in which to count the grains

outfile – output soundfile produced by the program

duration – duration of the noise part of the output soundfile

minfrq – the lowest 'frequency' in Hz acceptable as noise. Range: 1000 to 22050Hz. (Try
6000Hz)

mindur – the minimum duration of signal in milliseconds acceptable as noise source. Range: 0 to
50 milliseconds

maxdur – the maximum duration of signal in seconds acceptable as noise source. Range: 0.0 to
length of input soundfile (in seconds)

-x – keep only the extended noise. The Default is to keep the rest of the input source sound as
well.

Understanding the GRAIN NOISE_EXTEND Process

This process is complementary to GRAIN R_EXTEND. It searches for sybillants in speech (or
noise materials in any input sound) then allows them (and only them) to be sustained.

Note that different types of values are involved with the mindur and maxdur parameters. The
minimum duration is given in milliseconds, but the maximum duration, because you're thinking in
terms of the length of the soundfile, is given in seconds.

The -x option enables you to save only the extended noise component, discarding the rest of the
file. When -x is not invoked, you hear the whole soundfile (up to the maxdur you specified) with
that first (extended) noise component in its original position in the soundfile.

Musical Applications

This program acually looks for and extends (only) the first noise component that it finds at the
given parameter specifications.

The extended noise component, especially if saved on its own via the -x option, can be a useful
bit of source material for other sound transformations.

End of GRAIN NOISE_EXTEND

GRAIN OMIT – Omit a proportion of grains in a
grainy
sound

Usage

grain omit infile outfile keep out-of [-blen]
[-lgate] [-hminhole] [-twinsize] [-x]

Parameters

infile – input soundfile to process

outfile – output soundfile

keep – number of grains to keep from each set of
out-of grains

keep may vary over time, but must not exceed
out-of

out-of – keep grains retained from start of
each set of out-of grains

-blen – maximum time between grains (Range: 1 to duration of infile)

-lgate – required signal level for grain to be
seen (Range: 0 to 1; the Default is 0.3)

gate may vary over time.

-hminhole – minimum duration of holes between
grains (Minimum allowed value is 0.032 – the
Default)

-twinsize – gate level tracks the signal
level, as found with a window size of winsize milliseconds
(Range: 0.0 to duration of infile)

0.0 turns off tracking

-x – ignore the last grain in the source

Understanding the GRAIN OMIT Process

The key here is the out-of parameter. This defines the size of
the group which serves as the unit
of operations: out of every unit,
keep grains are retained. Thus, if 5 out of 10 are retained,
50%
of the file is omitted, if 7 out of 10 are retained, 3 out of
the 10 are omitted (30%go), if 4 out of
10 are retained, 6 out of the
10 are omitted (60% go).

What is significant about the out-of parameter is that its size
affects the result, Thus, a large
value for out-of with a smaller
value for keep , e.g., 20 and 10, will break up the file much
more
than it would if out-of were smaller: e.g., 4 and 2 –
even though the proportion of omitted
material is the same (50%). This
is because larger continuous chunks of the source (10 grains
rather than
2 grains) are lost in the former case.

Musical Applications

GRAIN OMIT provides a useful way to contract sound material without altering the sonic
substance (i.e. the grains are not themselves, time-contracted).

End of GRAIN OMIT

GRAIN REMOTIF – Change pitch and rhythm of
grains
in a grainy sound

Usage

grain remotif mode infile outfile transpmultfile
[-blen] [-lgate] [-hminhole]
[-twinsize] [-x]

Modes

1 Transform each grain in turn, without repeating any
grains: on reaching the end of the
transpmultfile data,
cycle back to its start.

2 Transform grain in each specified way before
proceeding to the next grain.

Parameters

infile – input soundfile to process

outfile – output soundfile

transpmultfile – is a file containing transposition
time multiplier pairs.

transpositions are given as positive or negative
semitone shifts.
the maximum transposition is 4 octaves up or down
time multipliers change the duration between one
grain onset and the next grain onset.
the maximum value for a multiplier is 1000
the minimum value for a multiplier is 0.001000
If any inter-grain time is reduced the minimum time
allowed for a grain (0.032 sec), it will
be reset to
this minimum grain time.

-blen – maximum time between grains (Range: 1 to duration of infile)

-lgate – required signal level for grain to be
seen (Range: 0 to 1; the Default is 0.3)

gate may vary over time.

-hminhole – minimum duration of holes between
grains (Minimum allowed value is 0.032 – the
Default)

-twinsize – gate level tracks the signal
level, as found with a window size of winsize milliseconds
(Range: 0.0 to duration of infile)

0.0 turns off tracking

-x – ignore the last grain in the source

Understanding the GRAIN REMOTIF Process

Implementing this process is really very easy. The transpmultfile
does not have to match the
number of grains in the infile. You
just need to design the pitch and time shapes into which you
want the
grains to flow. The pitch transpositions are placed in the left column
as positive or
negative semitones, and the time-multipliers are placed
in the right column, > 1 to make the gap
longer, < 1 to make it
shorter.

Here is an example transpmultfile that rises, drops down below the original pitch level, and then
rises back to the starting point, with the grains getting shorter and then longer again.

[transposition timing]

 (semitones) (multiplier)

0 1.0

1 0.9

2 0.8

3 0.7

2 0.6

1 0.5

0 0.4

-1 0.5

-2 0.6

-3 0.7

-2 0.8

-1 0.9

0 1.0

The difference between the modes is dramatic.

In Mode 1 a single line of the transpmultfile is applied to a single grain, the next line to the
next grain etc., cycling around the textfile until reaching the last grain of infile. Any
difference in duration between infile and outfile is due to the timing difference between the
grains. You can make the shape occur once by having as many lines in the textfile as there
are grains in the infile.

In Mode 2 ALL of the lines of the transpmultfile are applied to each grain in turn. Thus
every grain repeats for as many times as there are lines in the textfile, and one hears the
whole shape defined in the textfile repeated as many times as there are grains in the infile.
This makes the outfile much longer than the infile.

Be careful with Mode 2, because an over-long textfile will create a very long outfile (and be very
repetitive).

Musical Applications

GRAIN REMOTIF can be used to apply a gross shape to the grains of the infile, with controlled
accelerandi or other timing changes. This shape can occur once, cycle around the textfile with
one line per grain (Mode 1), or the shape can occur once per grain: each grain repeats with
transposition and timing differences as many times as there are lines in the textfile (Mode 2).

End of GRAIN REMOTIF

GRAIN REORDER – Reorder grains in a grainy
sound

Usage

grain reorder infile outfile code [-blen]
[-lgate] [-hminhole] [-twinsize] [-x]

Parameters

infile – input soundfile to process

outfile – output soundfile

code – a string such as adb:c indicating
how grains are to be reordered.

The example means use grains 1 (a), 4 (d)
and 2 (b) in sequence, then

 begin
this grain-jumping pattern again,

but start at grain 3 (c).

-blen – maximum time between grains (Range: 1 to duration of infile)

-lgate – required signal level for grain to be
seen (Range: 0 to 1; the Default is 0.3)

gate may vary over time.

-hminhole – minimum duration of holes between
grains (Minimum allowed value is 0.032 – the
Default)

-twinsize – gate level tracks the signal
level, as found with a window size of winsize milliseconds
(Range: 0.0 to duration of infile)

0.0 turns off tracking

-x – ignore the last grain in the source

Understanding the GRAIN REORDER Process

This is so much fun. Comparable with DISTORT SHUFFLE, GRAIN REORDER
provides another
way for controlled fragmentation. The illustration
code used in the Usage causes a fair amount of
fragmentation.
But a code such as abcdefg:b steps through 7 grains
in their normal sequence,
then goes back to the 2nd grain
and proceeds to the 8th etc., moving gradually through
the whole
infile in this way. The code gfedcba:b
does the same thing, but places the grains in reverse
order.

Musical Applications

So you can see that you can play with the shaping possibilities to
your heart's content, possibly
making subtle correlations between
the shapes made by the grains and patterns made elsewhere
in the music.

End of GRAIN REORDER

file:///E:/CDP/DOCS/!PRINT/cdistort.htm#SHUFFLE

GRAIN REPITCH – Repitch grains in a grainy
sound

Usage

grain repitch mode infile outfile transpfile
[-blen] [-lgate] [-hminhole]
[-twinsize] [-x]

Modes

1 Repitch each grain in turn, without repeating any
grains; on reaching the end of the
transposition list, cycle
back to its start.

2 Play grain at each transposed pitch, before
proceeding to the next grain.

Parameters

infile – input soundfile to process

outfile – output soundfile

transpfile – a file listing transpositions given
as positive or negative semitone shifts. The
maximum transposition
is 4 octaves up or down.

-blen – maximum time between grains (Range: 1 to duration of infile)

-lgate – required signal level for grain to be
seen (Range: 0 to 1; the Default is 0.3)

gate may vary over time.

-hminhole – minimum duration of holes between
grains (Minimum allowed value is 0.032 – the
Default)

-twinsize – gate level tracks the signal
level, as found with a window size of winsize milliseconds
(Range: 0.0 to duration of infile)

0.0 turns off tracking

-x – ignore the last grain in the source

Understanding the GRAIN REPITCH Process

This function is like GRAIN REMOTIF but only deals with transposition
of the grains. Again, the
transpositions are handled in terms of
positive or negative numbers of semitones, so it is very
simple to
create the required transpfile. The transposition pattern / contour in the transpfile is
transferred to the grains, such as narrow and wavy, or wide and jagged. This pattern can also
serve as an important gestural or formal unifier in the composition.

The textfile can be written on a single line, with the values separated
by spaces. Newlines are
ignored. For example:

0 1 2 3 2 1 0 -1 -2 -3 -2 -1 0

There may be some slight change in duration, proceeding from the
source to the outfile, due to
the effect of transposition
on the final grain. Otherwise the grain onset timings should
remain
exactly as in the source sound.

The role of the two Modes is the same as in GRAIN REMOTIF, either taking
each grain in turn, or
applying all the transpositions in the textfile
to each grain, repeating each grain as many times as
there are
transpositions.

Be careful with Mode 2, because an overly long textfile will
create a very long outfile (and be
very repetitive). However, the pattern is very clear, and a part of it may be especially interesting
and able to be CUT and used elsewhere.

Musical Applications

An ideal tool for creating staccato pitch figurations with clear contour shapes or even gestural
potential.

End of GRAIN REPITCH

GRAIN REPOSITION – Reposition grain onsets
in a
grainy sound

Usage

grain reposition infile outfile timefile offset
[-blen] [-lgate] [-hminhole]
[-twinsize] [-x]

Parameters

infile – input grainy soundfile

outfile – output soundfile with grain timing re-patterned

timefile – must contain a list of grain-onset times
in seconds. If any inter-grain time is reduced
the minimum time
allowed for a grain (0.032 sec), it will be reset to this
minimum grain time.

offset – add this value in seconds to all
grain timings – in effect, begin to apply the timefile
pattern at this point in the infile.

-blen – maximum time between grains (Range: 1 to duration of infile)

-lgate – required signal level for grain to be
seen (Range: 0 to 1; the Default is 0.3)

gate may vary over time.

-hminhole – minimum duration of holes between
grains (Minimum allowed value is 0.032 – the
Default)

-twinsize – gate level tracks the signal
level, as found with a window size of winsize milliseconds
(Range: 0.0 to duration of infile)

0.0 turns off tracking

-x – ignore the last grain in the source

Understanding the GRAIN REPOSITION Process

This process re-times the start-times of the grains in the soundfile according to the pattern of
times specified in timefile. The gaps between grain onsets can become larger or smaller in the
timefile, but all onset times must increase – otherwise you would be trying to go backwards:
e.g., 2.3 2.5 is OK, but 2.3 1.8 is not.

The offset parameter determines when after the start of the soundfile the timefile pattern is
applied. If, for example, the offset is 2 (sec.) and there are grains before the 2 second point, you
will hear these sound as normal, and then you will hear grains after the 2 second point patterned
by the timefile

It is useful to run GRAIN FIND first, because it finds any grains in the soundfile and writes their
start-times to a textfile. You can then edit this textfile to create a timefile with your own timing
pattern.

file:///E:/CDP/DOCS/!PRINT/cgrogrns.htm#FIND

Musical Applications

GRAIN REPOSITION enables you to impose a rhythmic structure on the grains in a soundfile.
Considerably more subtle effects are also possible. Trevor (Wishart) writes that it "provides a way
to create a correlation between the fine attack structure and some other musical events. For
example, the repositioning data can be taken from another grainy sound (using GRAIN FIND) or
any other timing data, allowing the fine attack structure of a grainy sound to be synchronised or
coordinated with another sound or sound sequence."

Here's a simple procedure:

A timefile for the grains in a soundfile is quickly
made with GRAIN FIND.
Then GRAIN REPOSITION is run twice, e.g., with an
offset of 0.25 the first time, and 0.33
the second time.
The two files can be mixed with SUBMIX MERGE and
You can then audition the result, hearing the double
occurrence of the grains.

End of GRAIN REPOSITION

file:///E:/CDP/DOCS/!PRINT/cgromixr.htm#MERGE

GRAIN RERHYTHM – Change rhythm of grains in
a
grainy sound

Usage

grain rerhythm mode infile outfile multfile
[-blen] [-lgate] [-hminhole]
[-twinsize] [-x]

Modes

1 Lengthen or shorten each grain in turn, without
repeating any grains; on reaching the end of
the
time-multipliers list, cycle back to its start.

2 Play grain at each specified retiming, before
proceeding to the next grain.

Parameters

infile – input soundfile to process

outfile – output soundfile

multfile – a file of listing duration-multipliers
to change the duration between one grain onset and
the next
grain onset.

the maximum value for a multiplier is 1000
the minimum value for a multiplier is 0.001000
If any inter-grain time is reduced the minimum time
allowed for a grain (0.032 sec), it will
be reset to
this minimum grain time.

-blen – maximum time between grains (Range: 1 to duration of infile)

-lgate – required signal level for grain to be
seen (Range: 0 to 1; the Default is 0.3)

gate may vary over time.

-hminhole – minimum duration of holes between
grains (Minimum allowed value is 0.032 – the
Default)

-twinsize – gate level tracks the signal
level, as found with a window size of winsize milliseconds
(Range: 0.0 to duration of infile)

0.0 turns off tracking

-x – ignore the last grain in the source

Understanding the GRAIN RERHYTHM Process

GRAIN RERHYTHM works in the same way as REMOTIF AND REPITCH, except
applied to the
timing of the grains only. Thus they retain their
original pitch but begin at different times,
according to the data in
multfile. It may be that the grain lengths appear to change,
because
they begin to overlap one another: i.e., the distance between
grain onsets changes, but the
lengths of the grains are not meant to
change.

The two Modes also work in the same way, either applying the data in
the textfile to the grains
sequentially, or repeating grains, applying
all the data in the textfile to each grain in turn.

Musical Applications

As pitch is not altered, the sense of movement is more directly
perceived. The flow of the grains
can be made to flex in supple or
in strongly contrasting ways.

If there is a stuttering or rapidfire quality, it may be caused by the process not adequately
separating the grains. If a group of grains are not seen as separate, they will behave as a single
grain. It is essential with grain processes to ensure that all the grains are clearly separated (i.e.,
set the appropriate gate level). In some cases it will not be possible to get a totally satisfactory
result (everything
depends on the nature of the source). A little cosmetic editing may be
required.

Also see GRAIN TIMEWARP.

End of GRAIN RERHYTHM

GRAIN REVERSE – Reverse order of grains in
a grainy
sound without reversing the grains themselves

Usage

grain reverse infile outfile
[-blen] [-lgate] [-hminhole]
[-twinsize] [-x]

Parameters

infile – input soundfile to process

outfile – output soundfile

-blen – maximum time between grains (Range: 1 to duration of infile)

-lgate – required signal level for grain to be
seen (Range: 0 to 1; the Default is 0.3)

gate may vary over time.

-hminhole – minimum duration of holes between
grains (Minimum allowed value is 0.032 – the
Default)

-twinsize – gate level tracks the signal
level, as found with a window size of winsize milliseconds
(Range: 0.0 to duration of infile)

0.0 turns off tracking

-x – ignore the last grain in the source

Understanding the GRAIN REVERSE Process

Unlike MODIFY RADICAL Mode 1 (which plays the source sound
itself backwards, and thus can
radically modify it), this
process plays each original grain in the normal way (not reversed
in
time), but reversed in order. This is much like the idea
of retrograding a melodic motif in
traditional music (where the
sounds themselves are not reversed).

The original source is thus always clearly recognisable in the
output sound.

Musical Applications

The forwards orientation of each grain means that the attack transient
of the grains is retained.
Even through the grains are generally very
TW: Even though (Rather than 'even through')
short,
it is a tribute to the acuteness of our hearing that their
forwards orientation makes such a
difference in the recognisability of
the original. GRAIN REVERSE, therefore, provides a
wonderfully subtle
variant of the original.

End of GRAIN REVERSE

GRAIN R_EXTEND – 'Time-stretch' natural sounds like
the rolled 'rrr' in speech

Usage

grain r_extend 1 infile outfile stt end ts pr rep get asc psc [-x]

grain r_extend 2-3 infile outfile gate usz ts pr rep get asc psc skp at T by [-s] [-e]

Modes

1 Mark where the iterative part of the sound is located.

2-3 The program attempts to find the iterative part, using envelope tracing.

Parameters

infile – input soundfile containing iterative material

outfile – output soundfile with the iterations extended

stt – (Mode 1) - time of start of iterated material within source soundfile

end – (Mode 1) - time of end of iterated material within source soundfile

gate – (Mode 2) - minimum level in source soundfile for envelope tracing to kick in. (Range: 0 to
1)

usz – (Mode 2) - size of unit searched for, in milliseconds (15 for rolled 'rr')

ts – ('time-stretch') - multiplier that specifies how much to time-stretch the marked (or found)
material

pr – guesstimate of the pitch-range of the iteration in the source, in octaves, or parts of octaves
(try pr = 1). This is the pitch range of the (low-frequency) iteration, NOT the resonant frequency.
E.g., for a rolled 'rrr', the frequency of the 'rrr' itself (even if unvoiced), and NOT the pitch of any
sung note (if 'rrr' is voiced). (Range: 0 to 4)

rep – ('repeats') - the iterated material is extended by reusing individual segments in a
randomised pattern. In this pattern, segment A may occur next to an identical copy of segment
A, or not – see more detailed explanation below. (Range: 1 to 32767). Recommendation: try rep
= 1 or rep = 2.

get – guesstimate of the number of iterations you expect
to find (in the segment you've selected
in the source – listen to the source). This helps to improve the accuracy of the search for iterated
segment boundaries. In Mode 2, this is the minimum number of repeats you expect to find.

asc – random amplitude variation of the output segments. The value for asc multiplies the
original segment amplitude by a random value in the range 1 to 1-asc. (Range of asc: 0 to 1)

psc – random pitch variation of the output segments. The value for psc transposes the pitch by a
random value in the range -psc to +psc semitones. (Range of psc: 0 to 24)

skp – the number of found (iterative) units to skip before processing

at T – iterative ritard, after at seconds to event-separation T

by – ritard end point reached after a further by seconds; by = 0 gives no ritard

[-x] – (Mode 1) - keep rrr-extension only
[-s] – (Mode 2) - keep sound before the extended material

[-e] – (Mode 2) - keep sound after the extended material

Understanding the GRAIN R_EXTEND Process

The key here is to listen to the source sound to ascertain where iterative material starts and
ends. 'Iterative material' means a rapid pulsation as in a vocal rolled 'r', vocal grit generally,
rattling train windows, etc. GRAIN R_EXTEND enables you to prolong this material, with subtle
variants in order to make the flow supple.

Notice that rep introduces a varying degree of randomised order in the repetitions of the grain
units, the randomisation increasing with higher values. Rep has to do with how the grain
sequence is generated by controlling how many identical grains can be adjacent.

Case 1:
1. If you have 4 grains 1, 2, 3, 4, these are played back in a random order, e.g., 3 - 1

- 4 - 2.

2. Then another random order of the 4 is generated, e.g., 2 - 4 - 3 - 1, etc., until the
(time-stretched) output duration is filled up.

3. When such permutations are put together, you might get a repetition of an element
at the boundary between them, such as, using the two sequences above: 3 - 1 - 4
- 2 - 2 - 4 - 3 - 1.

4. If in this case rep were to be set to 1, this sequence would not be permitted, i.e., the
second adjacent '2' would be discarded.

5. Thus rep determines how many such repetitions you allow.

Case 2:
1. If you set rep to 2, instead of permutating 1, 2, 3, 4, we permutate 1, 1, 2, 2, 3,

3, 4, 4, which generates a sequence in which any element might repeat: e.g., 4 -
1 - 4 - 3 - 3 - 1 - 2 - 2 in which the 2 and the 3 are repeated.

2. However, you could still get a second permutation such as 2 - 1 - 3 - 4 - 3 - 1 -
4 - 2, which, when juxtaposed with the first permutation, would place 3 2's adjacent
to each other: 4 - 1 - 4 - 3 - 3 - 1 - 2 - 2 - 2 - 1 - 3 - 4 - 3 - 1 - 4 - 2.

3. This would not be permitted if rep = 2, and the 3rd 2 would be discarded. You can see
therefore, how rep is functioning.

4. Thus rep is a function of the maximum internal 'loopiness' of the random
sequence.

Musical Applications

GRAIN R_EXTEND provides some middle ground between larger-scale segmentation
techniques
and smaller-scale granulation techniques. You can also focus on
a particular part of a sound and
prolong it with variants without having
to cut and resplice the material.

End of GRAIN R_EXTEND

GRAIN TIMEWARP – Stretch (or shrink) the
duration
of a grainy sound without stretching the grains
themselves

Usage

grain timewarp infile outfile timestretch_ratio
[-blen] [-lgate] [-hminhole]
[-twinsize] [-x]

Parameters

infile – input soundfile to process

outfile – output soundfile

timestretch_ratio – the degree of stretching or
shrinking of the intergrain time

timestretch_ratio may vary over time, using
a data file containing time timestretch_ratio
value pairs
this ratio is a floating point multipler
a value of 2 doubles the intergrain time
a value of 0.5 halves the intergrain time
the maximum value for a multiplier is 1000
the minimum value for a multiplier is 0.001000
If any intergrain time is reduced the minimum time
allowed for a grain (0.032 sec), it will
be reset to
this minimum grain time.

-blen – maximum time between grains (Range: 1 to duration of infile)

-lgate – required signal level for grain to be
seen (Range: 0 to 1; the Default is 0.3)

gate may vary over time.

-hminhole – minimum duration of holes between
grains (Minimum allowed value is 0.032 – the
Default)

-twinsize – gate level tracks the signal
level, as found with a window size of winsize milliseconds
(Range: 0.0 to duration of infile)

0.0 turns off tracking

-x – ignore the last grain in the source

Understanding the GRAIN TIMEWARP Process

Using a numerical value for timestretch_ratio applies a constant
multiplier to all the intergrain
times. Thus the grains come constantly
faster or slower, depending on the multiplier.

In the process the onset times of the grains are timewarped, but
not the grains themselves.
This is akin, for example, to playing
the same melody faster on the same instrument. It therefore
differs
from other timewarping processes, which also warp the internal
architecture of the sounds
themselves.

Use of a breakpoint file adds considerable flexibility to the process
because the function will
interpolate gradual changes between different
ratios at different times. For example, moving
from a multiplier of
1.0 to 2.0 over the time of the infile will produce a gradually
decelerando, or
from 1.0 to 0.5, a gradual accelerando. Similarly,
speeds can be stepped by applying different
ratios at marginally
different times (it isn't logical to apply two different ratios at
precisely the
same time).

As an example of stepped changes, the following breakpoint file doubles
the gap time for the first
half of a 1.8 second infile, halves
the (original) gap time for 0.6 seconds, returning to the longer
gaps
for the last part of the sound. Between these times, the timing of the
grains remains
constant.

[time timestretch_ratio]

0.0 2.0

0.9 2.0

1.01 0.5

1.60 0.5

1.61 2.0

Musical Applications

This is an important tool for creating all kinds of rhythmic patterns.

End of GRAIN TIMEWARP

WRAPPAGE – Granular reconstitution of one or more
soundfiles over multi-channel space

Usage

wrappage infile [infile2 ...] outfile centre outchans spread depth

velocity hvelocity density hdensity grainsize hgrainsize pitchshift hpitchshift amp hamp bsplice hbsplice
esplice hesplice

range jitter outlength

[-bmult] [-e] [-o]

Example command line to create multi-channel brassage:

wrappage wrappage horn omahum seven hosmc 4.5 8 4 5 etc.

Parameters

infile – input mono soundfile

infile2 ... – optional second and subsequent input soundfiles

outfile – output multi-channel soundfile – 2 or more (filename must not end with a '1')

centre – central position of the output sound field image in the outfile (Range 0 to outchans).
Values < 1 for centre are positions between the last channel and the first channel. Centre can be
a numeric constant, or a breakpoint text file of time centre direction triples. Direction has two
settings: 1 = clockwise, and -1 = anticlockwise; this is the direction of movement of centre from
its previous position to its next position.

outchans – the number of channels in the output soundfile.

spread – the width (from far Left to far Right) of spatialisation around centre.

depth – the number of channels with sound, behind the leading edges of spread. The depth
parameter is not allowed to be larger than 2 * spread. If it is, the program automatically
truncates it to the maximum allowed value.

velocity – the speed of advance within the infile(s), relative to outfile. This value must be >= 0.

This is the inverse of a timestretch (i.e., 1/n: higher
values make the output shorter,
lower values – less than 1
– make it longer). This permits an infinite timestretch.

density – grain overlap. Values > 0 and < 1 leave intergrain silence. Extremely small values don't
perform predictably.

grainsize – grainsize in milliseconds (must be > 2 * splicelen). (Default 50)

pitchshift – pitchshift in + or - (fractions of) semitones.

amp – gain on grains (Range 0 to 1) (Default 1.0). Use if amplitude variation is required (over a
range &/or in time).

bsplice – grain-startsplice length,in milliseconds (Default 5)

esplice – grain-endsplice length,in milliseconds (Default 5)

range – the length of time in milliseconds before 'now' in the infile in which the search for the
next grain will take place (Default 0: stay at 'now')

jitter – randomisation of grain position (Range 0-1) (Default 0.5)

outlength – maximum outfile duration in seconds (if end of data is not reached). Set to zero
(Default) to ignore. NB: if velocity at any point is 0, a value for outlength must be given.

hvelocity, hdensity, grainsize, hpitchshift, hamp, hbplsice, hesplice – allow a range of
values to be specified for any of the cooresponding parameters above. For example, with
both pitchshift and hpitchshift set, a random value for pitchshift is chosen somewhere
between these lower and upper limits.
NB pitchshift and hpitchshift can both vary through time, i.e., use a breakpoint text file
containing time pitchshift value pairs. The same is true of the other low-high parameter
pairs.
All parameters except outlength and outchan can vary through time.

EXTRA OPTIONAL FLAGS:

-bmult – enlarges the output buffers mult times. This is to accommodate long silences which
may appear in the output.

-e – use exponential splices (Default: linear)

-o – make parameters other than velocity relative to time in the output soundfile. By default,
these other parameters are read relative to time in the soundfile, but velocity is AWAYS read
relative to time in the file.

Understanding the WRAPPAGE Process

How is a 'moving' multi-channel output is achieved?

T Wishart writes:

The centre parameter of WRAPPAGE defines spatial position: i.e., the channel number at which
the output sound field is centred. This centre can be made to move from one output channel to
another by providing a data file of time centre direction value-triples. For example:

time centre direction

0 2 1

2 4 -1

5 2 1

The centre of the image starts (time 0 on line 1) at channel 2, and moves clockwise: the last '1'
on line 1 indicates clockwise motion. At 2 seconds (line 2) it reaches channel 4, and then begins
to move anticlockwise (the '-1' on line 2), until, at 5 seconds (line 3) it arrives at channel 2.

The spread parameter of WRAPPAGE defines spatial spread: the width of the sound image, i.e.,
how many adjacent channels, or loudspeakers across which it spreads around this centre. Thus,
for example, an image centred at 4 with a spread of 3 (in an 8-channel output space) would be
spread across channels 3, 4 and 5.

The moving image of 'wrappage' works in exactly the same way as that in MCHANPAN, but is in
no way dependent on it. WRAPPAGE produces the spatial motion itself. There is a difference,
because MCHANPAN Mode 1 is moving a single (mono) source around the multi-channel space
whereas WRAPPAGE is generating a sound-image of textured sounds which can not only move,
but can change in width (as it moves or even when its' centre is stationary. The wrappage sound
image could fill the entire multi-channel space (centre it anywhere and, in an N-channel space,
make the spread N), and this image could even rotate (keep the spread at maximum and move
the centre). However, unless the sound elements of the texture were themselves long, this
rotation might not be noticed: i.e., with very short sounds, it would not be possible to tell
whether the whole texture was rotating or whether the individual elements were simply occuring
in different positions, sounding much like a non-rotating texture of the same materials.

Musical Applications

This program is essentially the same as MODIFY BRASSAGE in that it produces granulated
soundfile output. The difference lies in its multi-channel facilities, particularly the movement
patterns that can be achieved with a breakpoint file input for the centre parameter: defining with
value triples the time, the centre position of the sound image (the channel), and the direction of
movement. A multi-channel output soundfile of outchans number of channels can be created.

End of WRAPPAGE

Last Updated 2 July 2015 -- HTML5 version

Documentation: Archer Endrich, revised R. Fraser

© Copyright 1998-2015 Archer Endrich & CDP

file:///E:/CDP/DOCS/!PRINT/cgromody.htm#BRASSAGE

