

CDP FILTER Functions

(with Command Line Usage)

Functions to FILTER soundfiles

(Names in brackets mean that these are separate programs. The others are sub-modules of FILTER.)

BANK
Bank of filters, with time-varying Q

BANKFRQS
Generate a bank of frequencies
for use as a filterbank (add amplitudes to the textfile for use with
FILTER USERBANK)

[FILTRAGE]
Generate randomised VARIBANK filterbank files

FIXED
Boost or Cut: above, below or
around a given frequency

ITERATED
Iterate a sound, with cumulative
filtering by a filterbank

LOHI
Fixed low pass or high pass filter

PHASING
Phase shift sound, or produce phasing
effect

SWEEPING
Filter whose focus-frequency sweeps
over a range of frequencies

USERBANK
User-defined filterbank, with
time-varying Q

VARIABLE
Lo-pass, High-pass, Band-pass or
Notch filter with time-varying frequency

VARIBANK
User-defined time-varying
filterbank, with time-varying Q

VFILTERS
Make datafiles for fixed-pitch
FILTER VARIBANK filters

ALSO SEE:
[FASTCONV]

Multi-channel fast convolution

General comment about FILTER

When filters of time-varying Q are used, the output level tends
to drop as the Q increases. This
can be compensated for later by
using MODIFY LOUDNESS, Mode 5
(Balance sources),
submitting the original file and the filtered file as
the two sources. The resultant soundfile will
have the sound of the
filtered file with the amplitude contour of the original sound.

file:///E:/CDP/DOCS/!PRINT/cxreverb.htm#FASTCONV
file:///E:/CDP/DOCS/!PRINT/cgromody.htm#LOUDNESS

FILTER BANK – Bank of filters, with time-varying Q

Usage

filter bank 1–3 infile outfile Q gain lofrq hifrq
[-sscat] [-d]

OR:

filter bank 4–6 infile outfile Q gain lofrq hifrq param
[-sscat] [-d]

Modes

1 HARMONIC SERIES over lofrq

2 ALTERNATE HARMONICS over lofrq

3 SUBHARMONIC SERIES below hifrq

4 HARMONIC SERIES WITH LINEAR OFFSET: param = offset in Hz

5 EQUAL INTERVALS BETWEEN lofrq and hifrq:
param = number of filters

6 EQUAL INTERVALS BETWEEN lofrq and hifrq:
param = number of semitones in the interval

Parameters

infile – input soundfile to filter

outfile – output (filtered) soundfile

Q – 'tightness' of filters (Range: 0.00100 <= Q
< 10000) – the higher the value the more tightly
the filter is
focused on the centre frequency of that filter.

Q may vary over time.

gain – overall gain (Range: 0.00100 to 10000.0)

lofrq – low frequency limit of filters (Range: 10 to
sample_rate/3)

hifrq – high frequency limit of filters (Range: lofrq+
to sample_rate/3)

param –

in Mode 4, offset in Hz
in Mode 5, number of filters
in Mode 6, number of semitones in interval

-sscat – random scatter of filter frequencies
(Range: 0 to 1; the Default is 0)

-d – double filtering

Understanding the FILTER BANK Process

It may be helpful to compare this function with FILTER USERBANK and FILTER VARIBANK,
which allow the user to specify the frequency
centres for the bank of filters. FILTER BANK handles
the definition
of the frequencies for you, by means of a variety of presets.

Each Mode operates a different preset. This is how they work:

Mode 1 – The harmonic series is formed by multiplying
a given frequency by an ascending
series of integers: 1, 2, 3, 4, etc.
The harmonic relationships produced are sonorous, but
depart from
the structure of triadic chords higher in the series. This Mode builds
this type
of harmonic relationship onto lofrq, which may be
the actual pitch of a pitched tone or any
arbitrary pitch. Because
this is being done with a filter process, other sonic material is
cleaned away, so a cleaner (and possibly quieter) sound may result,
with more complex
noise elements removed. Quite a bit of gain
may be required – values of 40 or 50+ in this
situation will not
be unusual. Set hifrq as high as possible less too few harmonics
are
produced. This clean sound may provide a good input for spectral
time-stretching, for
example, to achieve a well-tuned sound with a minimum
of artefacts.

Mode 2 – This will be like Mode 1 but with
every other harmonic omitted: the odd
numbered partials are
retained. The resulting sound will probably sound more 'hollow'.

Mode 3 – The 'subharmonic series' is the intervallic
inverse of the harmonic series. Thus
the departure from triadic-type
intervals increases as the series descends. The resulting
sound has
a deeper tone and is somewhat hollow and somewhat inharmonic.

Mode 4 – The offset in Hz is added to each harmonic.
This will displace them so that they
will no longer be exact multiples
of the fundamental. This means that the cycles of the
waveforms no
longer line up at nodes, which introduces an 'inharmonic' dimension
into the
sound, heard as an increase in timbral components.

Mode 5 – Here we depart from the harmonic series and
simply divide up the specified
frequency range into an equal number
filters: how many is specified by the user with
param. The
first effect this equal spacing will have is to create inharmonic
(rather than
integer multiple) relationships between the partials.
A low number of filters will produce an
'open' sound, and a high
number of filters will produce a denser, richer sound. These might
be very interesting sounds to timestretch.

Mode 6 – By specifying the interval (in semitones), we
in effect repeat these intervals
within the frequency space between
lofrq and hifrq, thus producing complex chords
composed
of the same interval 'piled up'. This is a quick way to 'harmonise'
a sound, with
the resulting density dependent on the size of the
interval. It is well worth re-running this
function, entering
intervals from 1 to 7, for example, to hear what kind of transformations
will be produced. Some unexpected resonances may result; they could
be filtered out later.

Musical Applications

The use of the presets provide quick ways to create a variety of
harmonic and inharmonic
transformations. The resulting sounds have
a sonorous, chordal quality. One may need to push
the gain control
as far as it can go without overloading, less too much signal is
lost through the
filtering process.

The resulting sounds can be used for rich, sonorous textures or
clean time-stretching, or other
spectral transformations.

Having said that, the 'chordal quality' will be diminished if the
Q is lower (i.e., less pitch focus).
Also note that a lower
Q 'lets through' more of the original signal, so the gain
will also have to be
reduced. For example, with a Q of 100, a
gain of 100 worked fine; but with a Q of 100, a gain
of
5 was required (for the source sound used).

End of FILTER BANK

FILTER BANKFRQS – Generate a bank of frequencies
for use as a filterbank (add amplitudes to the textfile
for use with
FILTER USERBANK)

Usage

filter bankfrqs 1–3 anysndfile outtextfile lofrq hifrq
[-sscat]

OR:

filter bankfrqs 4–6 anysndfile outtextfile lofrq hifrq param
[-sscat]

Modes

1 HARMONIC SERIES over lofrq

2 ALTERNATE HARMONICS over lofrq

3 SUBHARMONIC SERIES below hifrq

4 HARMONIC SERIES WITH LINEAR OFFSET: param = offset in Hz

5 EQUAL INTERVALS BETWEEN lofrq and hifrq:
param = number of filters

6 EQUAL INTERVALS BETWEEN lofrq and hifrq:
param = number of semitones in the interval

Parameters

infile – input soundfile to filter

outtextfile – output textfile containing frequency data

lofrq – low frequency limit of filters (Range: 10 to
sample_rate/3)

hifrq – high frequency limit of filters (Range: lofrq+
to sample_rate/3)

NB: The sample rate of the input soundfile determines the
filter frequency range.

param –

in Mode 4, offset in Hz
in Mode 5, number of filters
in Mode 6, number of semitones in interval

-sscat – random scatter of filter frequencies
(Range: 0 to 1; the Default is 0)

Understanding the FILTER BANKFRQS Function

This function carries out the same operations as FILTER BANK, but writes
the resulting
frequencies to a textfile rather than applying them to a
soundfile.

NB: An existing outtextfile of the same name will be
overwritten without checking with you first.

See FILTER BANK for the meaning of each Mode.

Musical Applications

This textfile can then be edited and is then available as
an input to FILTER USERBANK and
FILTER VARIBANK, the filter bank functions which take a user-defined
set of filter centre-
frequencies as an input.

End of FILTER BANKFRQS

FILTRAGE – Generate randomised VARIBANK
filterbank files

Usage

filtrage filtrage 1 outfiltdatafile dur cnt min max distrib rand ampmin amprand ampdistrib [-sseed]

filtrage filtrage 2 outfiltdatafile dur cnt min max distrib rand ampmin amprand ampdistrib timestep
timerand [-sseed]

Example command line to create a randomised filterbank:

filtrage filtrage 1 filtout.txt 10 4 36 72 1 0.75 0.5 0.5 0 2 0

Modes

1 Generate a fixed filter data file

2 Generate a time-varying filter data file

Parameters

outfiltdata – output text file containing the time-varying filterbank data for FILTER VARIBANK

dur – the duration spanned by the output filter file

cnt – the number of parallel filters

min – the minimum MIDI value for the filters

max – the maximum MIDI value for the filters

distrib – the distribution of pitch values:

 • 1 = pitch-linear
 • > 1 squeezes the filter towards the low pitches

 • < 1 squeezes the filter towards the high pitches

rand – randomisation of the filter pitches

ampmin – the minimum filter amplitude. The maximum amplitude allowed here is = 1.0

amprand – randomisation of the filter amplitudes

ampdistrib – the distribution of the filter amplitudes:

 • 1 = increasing with pitch

 • -1 = decreasing with pitch

 • 0 = random

 • Intermediate values give decreasing degrees of randomisation.

timestep – the amount of time in seconds between each specified set of filter-pitches

timerand – randomisation of the timestep

-sseed – non-zero values fix the randomisation so that, on repeating the process identical
random values are produced.

file:///E:/CDP/DOCS/!PRINT/cgrofilt.htm#VARIBANK

Understanding the FILTRAGE Function

Filtrage produces a filter data file for FILTER VARIBANK, with random frequencies. These are
distributed within the desired frequency range either evenly, or skewed toward the top or bottom
of the range. The command line above (4 filters, MIDI range 36-72, and a set of values every 2")
produced this file:

Time Frequencies

 0.00 36.652402 0.962668 48.366554 0.835011 54.429201 0.673751 60.270501 0.514595

 2.00 37.025983 0.993088 46.420885 0.844629 54.091361 0.700716 62.949427 0.506138

 4.00 37.794362 0.842264 48.314848 0.675147 54.824309 0.972373 61.072253 0.506926

 6.00 37.754604 0.961428 46.912400 0.697998 56.042592 0.852223 61.980918 0.539829

 8.00 38.631340 0.983648 47.445116 0.874975 55.960192 0.708066 60.152669 0.525479

10.00 38.285569 0.868233 45.837905 0.707601 56.749790 0.988629 62.810274 0.511495

The randomisation is not as great as you might imagine, but permits a controllable degree of
variation of amplitude, frequency and output times, which can be further adjusted manually as
required.

End of FILTRAGE

FILTER FIXED – Boost or Cut: above, below or
around
a given frequency

Usage

filter fixed 1–2 infile outfile boost/cut frequency
[-sprescale]

filter fixed 3 infile outfile bandwidth boost/cut frequency
[-sprescale]

Modes

1 Boost or cut below a given frequency

2 Boost or cut above a given frequency

3 Boost or cut a band centered on a given frequency

Parameters

infile – input soundfile to filter

outfile – output (filtered) soundfile

bandwidth – filter bandwidth in Hz – Mode 3 only

boost/cut – amplitude boost or cut, in dB

frequency – the frequency of the filter in Hz

-sprescale – scales gain on the input to the
filter

Understanding the FILTER FIXED Process

This filter is referred to as 'fixed' because a single frequency of
fixed amplitude roll-off (Q), is
preset within the function.

FILTER FIXED requires very precise frequency inputs. It can therefore
be useful to analyse the
sound and use SPECINFO PEAK get a profile of
the frequency bands in which most energy
occurs.

For example, a trombone sound playing an F below Middle-C (174.61 Hz)
showed almost no
change when this frequency was used as the input to
FILTER FIXED. SPECINFO PEAK showed that
the energy was concentrated
between 640 Hz and 905 Hz. Mode 1 and Mode 2 inputs
relating to
these frequencies worked fine: e.g., filtering out below
905 Hz or above 640 Hz really made a
difference; similarly,
filtering out a 200 Hz band centered on 700 Hz.

Musical Applications

FILTER FIXED can be a quick way of achieving three common filtering
operations: hi-pass (Mode
1: cut below), lo-pass (Mode 2:
cut above), or notch (Mode 3: cut around), given a precise
knowledge of the frequency area to be filtered and an acceptance of
a fixed, average amount of
Q.

End of FILTER FIXED

file:///E:/CDP/DOCS/!PRINT/cspecinf.htm#PEAK

FILTER ITERATED – Iterate a sound, with cumulative
filtering by a filterbank

Usage

filter iterated mode infile outfile datafile Q gain delay dur
[-sprescale] [-rrand] [-ppshift]
[-aashift] [-d] [-
i] [-e] [-n]

Modes

1 Enter filter pitches as frequency, in Hz

2 Enter filter pitches as MIDI note values

Parameters

infile – input soundfile to filter

outfile – output (filtered) soundfile

datafile – contains the pitch and amplitude of the filters
(paired, one pair on each line)

Pitch: as Hz or MIDI note values (Range: 10Hz to
sample_rate/3)
Amplitude: amplitude level (Range: 0.00100 to 10000.0
or entered as dB values)
Remember that it is possible to create a file of frequency
data with FILTER BANKFRQS and
then edit it to add the
amplitude information. Such files can be useful because
of their
harmonic structure.

Q – 'tightness' of filters (Range: 0.00100 <= Q
< 10000) – the higher the value the more tightly
the filter is
focused on the centre frequency of that filter.

Q may vary over time.

gain – overall gain (Range: 0.00100 to 10000.0)

delay – average delay in seconds between iterations
(Range: > 0 to 32767)

dur – (min) duration of output file (must be longer than
infile

-sprescale – scales gain on the input to the
filtering process (Range: 0.0 to 1.0; the Default is
1.0)

If set to 0.0, FILTER ITERATE automatically divides the input
level by the maximum
number of sound overlays occurring in the
iteration process.

-rrand – randomisation of the delay time (Range:
0 [none] to 1 [max])

-ppshift – maxmimum pitch shift of any segment in
(fractions of) semitones (Range: >= 0)

-aashift – maximum amplitude reduction of any
segment (Range: 0.0 to 1.0)

-d – double filtering

-i – turn off interpolation during filtering (makes it fast,
but dirty)

-e – add exponential decay: each segment gets quieter
before the next segment enters

-n – turn off normalisation: segments may grow or fall in
amplitude quickly; gain settings will
have more impact when
-n is used – but use this cautiously, as overload may
occur, which
FILTER ITERATED does not report.

Understanding the FILTER ITERATED Process

Note that the duration of the output soundfile is set with dur,
it will usually be considerably
longer than infile to provide
space in which the iterations can occur. In effect, this determines
the
number of iterations there will be, given the value for delay,
the time between iterations.

If you receive a message about 'insufficient memory', you can increase
the buffer capacity by
increasing the buffer size. This is done by
setting the environment variable
CDP_MEMORY_BBSIZE. This is 1 megabyte
by default. The units are 1K each, so a buffer size of
e.g., 6
megabytes can be set with the phrase: 'set CDP_MEMORY_BBSIZE=6000'.
Note that there
must NOT be spaces before and after the equals sign.
This can be done in the existing DOS
window, or in autoexec.bat
so that it sets this size upon boot-up. If the latter, the new size
will
not come into force until you re-boot.

More iterations means that the sound will be more filtered by
the time it reaches the end. This
has an important relationship
to Q, because the higher the Q, the more the original
sound
material disappears into a pure and clean resonance as the
sound progresses. Similarly, this
resonance can be made to modulate
nicely by using some pitch transposition with pshift,
producing
a weaving of differently tuned strands.

Delay is perhaps the key parameter, because it determines the
degree of overlap with each
overlap – or no overlap if it is
longer than infile. A long dur (many iterations) with
a delay longer
than infile means a series of differently
filtered repeats, with gaps between them. Higher values
of rand,
will close some of these gaps by introducing random overlaps. However,
with no or
occasional overlap, there will be no (or very little)
resonance effect.

NB: Each iteration begins at the beginning of infile and
plays delay amount of infile, before the
next iteration
commences over the top of it. How your source sound begins will greatly
affect the
results, especially the sharpness of attack and initial
amplitude. Normally, it should have a high
amplitude in order to
maximise signal as the filtering progresses.

A soundfile with a strong attack and a short delay (e.g., 0.2 or
0.1 sec) will produce a series of
pulsations which gradually disappear
into resonance, depending on Q. It takes quite a low Q
(e.g., well under 10) to hold off the resonance effect for a bit. The
timing of the transition from
the source sound to a resonant effect is
handled by balancing dur, delay and Q.

FILTER ITERATED is processor intensive. Very short values for delay
will increase the processing
time, though this does not appear to affect
the demands on available RAM.

Musical Applications

The results achieved with FILTER ITERATED can vary widely. Here is a
listing of some of the main
effects:

long dur – many iterations and plenty of time for
the repeated filtering to alter the sound
very short delay (< 0.05) – a granular sound which
gradually becomes a rapidly pulsating
resonance; add some
pshift and it may become a soft, modulating wash
short delay (e.g., ca 0.1 or 0.2) – rapidfire
pulsations
the use of exponential decay (-e) will increase the
sense of pulsation by dipping the
amplitude between iterations
long delay – gross iterations of the beginning of
the sound, becoming a bit softer as the
filtering takes effect
delay longer than infile – delay
amounts of infile with gaps between each iteration; add
some rand factor and there will be some random overlapping
of segments
high Q – the tendency to dissolve into resonance
will be considerably greater
high Q with pshift – the resonance produced
as the sound progresses will tend to warble
and weave tuned strands

End of FILTER ITERATED

FILTER LOHI – Fixed low pass or high pass filter

Usage

filter lohi mode infile outfile attenuation pass-band
stop-band [-sprescale]

Modes

1 Pass-band and stop-band are given as
frequency in Hz

2 Pass-band and stop-band are given as
(possibly fractional) MIDI note values

Parameters

infile – input soundfile to filter

outfile – output (filtered) soundfile

attenuation – gain reduction of the filter, in dB (Range:
0 to -96)

The greater the attenuation, the sharper the filter – but
it takes longer to calculate.

pass-band – last pitch to be passed by the filter

stop-band – first pitch to be stopped by the filter

If stop-band is above pass-band, this is a
low pass filter.
If stop-band is below pass-band, this is a
high pass filter.

-sprescale – apply gain on the input to the filtering
process – avoid overflows (Range: 0.005 to 200.0)

Understanding the FILTER LOHI Process

The lo-pass filter 'lets through' all of the sound below pass-band
and attenuates (makes
gradually softer) the frequencies higher than
pass-band, ending at stop-band.

The high-pass filter 'lets through' all of the sound above pass-band
and attenuates (makes
gradually softer) the frequencies lower than
pass-band, ending at stop-band.

The key is how the pass-band and stop-band are placed
against the significant frequencies of the
source sound. As mentioned
elsewhere, it may be useful to perform a spectral analysis on infile
and make a report with SPECINFO PEAK.

An interesting fact about the operation of the filters has recently been observed. With the hipass-
lopass filter (FILTER LOHI – and possibly with other filters?), if your source file has LOTS of
silence at the end, the filter suddenly slows down by a factor of 20 (or more!!) in the silent
buffers. At the moment, we don't know why this happens – there's no known bug in the code. So
you are recommended to 'topntail' (ENVEL DOVETAIL) any long sounds that fade away to nothing
before running them through filters.

Musical Applications

These basic filter operations can be used to clean up a sound by
removing excessive bass with a
high-pass filter, or some hiss (if it
is above significant frequencies in the source) with a low-pass
filter.

Musically, a high-pass filter makes the sound 'thin' by removing the
bottom, and a low-pass filter
makes the sound deep and rumbling by
removing the top.

End of FILTER LOHI

file:///E:/CDP/DOCS/!PRINT/cspecinf.htm#PEAK

FILTER PHASING – Phase shift sound, or produce
phasing effect

Usage

filter phasing mode infile outfile gain delay
[-sprescale] [-l]

Modes

1 Allpass filter (phase-shifted)

2 Phasing effect

Parameters

infile – input soundfile to phase shift

outfile – output (phase-shifted) soundfile

gain – amplitude adjustment (Range: -1.0 to 1.0)

In Mode 2 the phasing effect increases as gain
increases from -1.0, but a gain of 1.0
will produce
complete phase cancellation and the output signal will be 0.

delay – time in milliseconds between return of delayed
material (Range: 0.045 to 1644.35 ms)

Delay may vary over time.

-sprescale – scale gain on the input to the
filtering process (Range: 0.0 to 1.0; the Default is
1.0)

-l – linear interpolation of changing delay values (Default:
logarithmic)

Understanding the FILTER PHASING Process

The 'phasing effect' is a kind of sweeping band passing through the
sound, such as is sometimes
heard when aeroplanes fly overhead, and
is much used in popular music.

Increasing the gain factor has some effect on the reverberant
quality of the sound. So does
increasing the delay time. The
sound will still sound quite dry with delay < 20 (ms).
Between
about 20 and 45 ms there is a touch of resonance in the
sound. Around 50 ms there is significant
echoey reverberation (though
somewhat granulated), and after 100 ms we start to hear larger
portions
of the sound repeating.

Overall, the degree of reverberant effect is controlled by increasing
both the gain and delay
parameters in tandem.

Musical Applications

Used with care, this function can be used to produce a variety of
reverberant effects. The mid-
range results are similar to the sound
of a loud clap in a stairwell or under the overhang of a
cement building.

Longer delay times will produce echo effects, but also see
MODIFY REVECHO for echoes proper,
as well as the other REVERB options.

End of FILTER PHASING

file:///E:/CDP/DOCS/!PRINT/cgromody.htm#REVECHO
file:///E:/CDP/DOCS/!PRINT/cxreverb.htm

FILTER SWEEPING – Filter whose focus-frequency
sweeps over a range of frequencies

Usage

filter sweeping mode infile outfile acuity gain lofrq hifrq
sweepfrq [-pphase]

Modes

1 High-pass

2 Low-pass

3 Band-pass

4 Notch (band-reject)

Parameters

infile – input soundfile

outfile – output soundfile

acuity – tightness of the filter (Range: 0.000100 to 1.0)

Smaller values give a tighter filter.

gain – overall gain on output (Range: 0.001000 to 10000.0)

Rule of thumb: If acuity = (1/3)-to-power-n,
gain = (2/3)-to-power-n.

lofrq – lowest frequency to sweep to (Range: 10.0 to
sample_rate/2)

hifrq – highest frequency to sweep to (Range: 10.0 to
sample_rate/2)

sweepfrq – frequency of the sweep itself (Range: 0.0 to 200;
the Default is infile_duration/2)

For example, to sweep once over the time of the soundfile, set
sweepfrq to
infile_duration/2 and set
phase to 0 (upsweep) or 0.5 (downsweep)

-pphase – start position of the sweep (Range: 0 to 1;
the Default is 0.25 – midway along the
rising curve)

Imagine a series of points along a rising and falling curve. The
curve begins at 0 (=
lofrq) rises to 0.5 (= hifrq),
and moves on to 1, falling back to lofrq. The phase
value
identifies where along this curve the sweep shape begins.

Acuity, lofrq, hifrq and sweepfrq may
all vary over time.

Understanding the FILTER SWEEPING Process

This filter is most effective in Band-pass or Low-pass mode, with low
acuity. It is difficult to get a
result in High-pass mode.
A tight filter makes the sweep more audible, but too tight and it may
appear as a thin sine wave (resonance) which doesn't really connect
with the sound.

A fairly long soundfile and a fairly broad range of frequencies gives
this function something to
work with.

Watch for overflows and reduce the gain as necessary.

Musical Applications

With acuity less than 0.1 (tight) and a sweepfrq less than
0.5 (slow), one can produce wah-wah
effects. Sometimes it may be useful
to cut only a segment of these timbrally modulating glissandi
for use
as a separate soundfile.

With sweep frequencies of, for example, 20 or 100, and perhaps a wider
acuity, one can produce
fluttering effects, the wider the
acuity, the 'looser' the flutter/flapping effect.

Sometimes, with tighter acuity settings, one can hear movement
through the harmonic overtone
series.

End of FILTER SWEEPING

FILTER USERBANK – User-defined filterbank, with
time-varying Q

Usage

filter userbank mode infile outfile datafile Q gain
[-d]

Modes

1 The pitches to filter are entered as frequency in Hz

2 The pitches to filter are entered as MIDI note values

Parameters

infile – input soundfile to filter

outfile – output (filtered) soundfile

datafile – contains the pitch and amplitude of the filters
(paired, one pair on each line)

Pitch: as Hz or MIDI note values (Range: 10Hz to
sample_rate/3)
Amplitude: amplitude level (Range: 0.00100 to 10000.0 or entered as dB values)
Comment lines (starting with ';') may be used.

Q – tightness of filter (Range: 0.001000 to 10000.0) –
the higher the value the more tightly the
filter is focused on the centre
frequency of that filter.

Q may vary over time.

gain – overall gain (Range: 0.001000 to 10000.0)

-d – double filtering

Understanding the FILTER USERBANK Process

Here Q may vary over time, but the frequency settings are fixed
for the duration of the sound.
The tightness of the Q determines
how much of the original sound 'comes through', or, to put it
another
way, the degree to which the sound is tuned to the frequencies defined
in the filter bank.

Much of the effectiveness of the function therefore depends on the
design of the datafile.
Normally, dB amplitude settings will
fall within a 0dB to -96dB range, but the function does allow
dB
greater than 0 (i.e., applying gain to the sound). If you have
existing filter bank files with dB
greater than 0 and they overload,
you can use gain with values below zero to scale the
amplitudes
back within range – i.e., without having to edit your file.

Musical Applications

As with any graphic equaliser, this function can be used to emphasize
or de-emphasize different
frequency regions of the source sound.

It can also be used to impart a harmonic sonority to a sound. The
higher the Q, the clearer the
pitched effect (e.g., values
between 300 and 1000). Given a source with a rapidly changing
amplitude
envelope, this may come across as a series of harmonic scintillations,
whereas a sound
with a steadier amplitude envelope will become a chord.

End of FILTER USERBANK

FILTER VARIABLE – Lo-pass, High-pass, Band-pass
or
Notch filter with time-varying frequency

Usage

filter variable mode infile outfile acuity gain frq

Modes

1 High-pass

2 Low-pass

3 Band-pass

4 Notch (Band reject)

Parameters

infile – input soundfile to filter

outfile – output (filtered) soundfile

acuity – tightness of the filter (Range: 0.000100 to 1.0)

Smaller values give a tighter filter.

gain – overall gain on output (Range: 0.001000 to 10000.0)

Rule of thumb: If acuity = (1/3)
-to-power-n,
gain = (2/3)-to-power-n.

frq – frequency of the filter (Range: 10.0 to
sample_rate/2)

Acuity and frq may vary over time.

Understanding the FILTER VARIABLE Process

The acuity parameter controls the rate at which the amplitude
decreases as one moves away
from frq. The faster the rate,
or, to put it more technically, the steeper the slope of the roll-off,
the more the resulting sound is focused on frq (Band-pass),
or the area above (Hi-pass) or below
(Lo-pass) frq, or
omits the area around frq (Notch). It is best not to make
the acuity too tight
with this filter, as the resonance
produced may become unpredictable.

Hi-pass and Lo-pass are not very effective in FILTER VARIABLE, which
has been designed as a
'lightweight', fast filter. For more powerful
Hi-pass and Lo-pass filtering, it is recommended that
you use
FILTER LOHI.

Because a filter often creates resonance (boosts the amplitude
of frequencies in a certain
frequency area), especially with a broader
roll-off region, overload can easily occur. FILTER
VARIABLE reports any
overflows, in which case the outfile should be deleted without
being played
and the function run again with a reduction in the
gain.

Musical Applications

FILTER VARIABLE provides a convenient environment for exploring the
effect of a variety of filter
types on a given sound.

End of FILTER VARIABLE

FILTER VARIBANK and VARIBANK2 – User-defined
time-varying
filterbank, with time-varying Q

Usage

filter varibank mode infile outfile datafile Q gain
[-hhcount] [-rrolloff] [-d]

filter varibank2 mode infile outfile datafile Q gain
[-ttail] [-d]

Modes

1 The pitches to filter are entered as frequency in Hz

2 The pitches to filter are entered as MIDI note values

Parameters

infile – input soundfile to filter

outfile – output (filtered) soundfile

datafile – contains lines of data for filter bands at successive
times

Each line contains data in a certain format.
This format is: Time: Pitch1 Amp1 [Pitch2 Amp2
etc...]
The Pitch and Amplitude values must be paired, but any number of
pairs can be used on
one line.
All the lines in datafile must have the same number
of pairs.
To eliminate a band in any line(s), set its amplitude to 0.0)
Time values are in seconds and must be in ascending order
and >= 0.0
Pitch values may be entered as frequency in Hz (Mode 1)
or as MIDI note values (Mode 2)
Amplitude values may be numeric or expressed as dB values
(e.g., -4.1dB)
Comment lines may be used – they must begin with ';'
In FILTER VARIBANK2, you can also specify partials and their relative weighting. To do this
you add a '#' sign on the next line at the bottom of the datafile, followed by lines which
specify the way the partials vary over time. The default (in VFILTERS) is harmonics at
2,3,4,5,etc. times the given frequency (as MIDI pitch or frequency). In FILTER VARIBANK2
you can specify the partials in this format to add changing timbral colouring (also see
below):

	 #

	 Time Partials with Amplitude weighting (pairs)]

	 0 1 .5 2.2 .7 4.6532 .5

	 4.5 1 .25 2.4 .2 3 .14

	

See a synopsis of the file format in CDP Files & Codes.

Q – tightness of filter (Range: 0.001000 to 10000.0) –
the higher the value the more tightly the
filter is focused on the centre
frequency of that filter.

Q may vary over time.

gain – overall gain on output (Range: 0.001000 to 10000.0)

-hhcount – number of harmonics of each pitch to use
(Default: 1)

The high harmonics of high pitches may go beyond the Nyquist
frequency
(sample_rate/2)

-rrolloff – decrease in amplitude level in dB from
one harmonic to the next (Range: 0 to -96)

-d – double filtering

file:///E:/CDP/DOCS/!PRINT/filestxt.htm#FILTERVFILES

Understanding the FILTER VARIBANK Process

The frequencies specified in the datafile are in fact the
centre-frequencies of a filter band. With a
tight Q,
these specific frequencies will be heard as pitches; with a relaxed
Q, these specific
frequencies will locate a relatively fuzzy
pitch region. The pitch will glissando between different
pitch levels
when these differ between time points.

Note that if the datafile has, for example, 10 Pitch/Amplitude
pairs on a line, each column of
paired values relates to a given 'band'.
Thus the change over time for each band will be specified
by the
sequence of paired values in a given column. The value for Q is
not contained in the
datafile, but the time points for changes
in Q can be made to match or vary from those in the
datafile.

In the additional lines supplied for the FILTER VARIBANK2 option, the first value in each line is a
time. The following values are in pairs representing the partials (they can in fact be ANY
number) and their relative amplitude. Note that as with the frequency (or MIDI) data already
given, there must be the same number of entries in each line. If you want to omit a partial at
given times, give it an amplitude of 0.

Thus you might omit the second partial during specified times:

Time Partials with Amplitude weighting (pairs)]

0 1 0.3 2.237 0.4 7.615 0.8

1 1 0.3 2.37 0 7.615 0.8 [partial 2.37 disappears

2 1 0.3 2.37 0 7.615 0.8 during these times]

3 1 0.3 2.37 0.4 7.615 0.8

The partials could also be changing:

0 1 0.3 2.237 0.4 7.615 0.8

1 1 0.3 3.34 0 14.22 0.8

2 1 0.3 16.3 0 8.322 0.8

3 1 0.3 22.6 0.4 7.615 0.8

Here's a complete example, with VARIBANK + VARIBANK2 data:

Example Data and Q settings for FILTER VARIBANK

Datafile | Q-file

Time Pitch1 Amp1 Pitch2 Amp2 Pitch3 Amp3 Description | Time Q Description

0.0 53 -3dB 53 -3dB 53 -3dB F below Middle C | 0.0 5000 Very tight
focus

2.0 65 0dB 53 0dB 41 0dB F in 3 octaves | 2.0 70 Very fuzzy

3.0 57 -6dB 54 -6dB 50 -6dB D-Major chord | 3.0 2000 Mid-range
pitch focus

4.5 67 -3dB 62 -3dB 59 -3dB G-major, 1st

inversion
| 4.5 2000 No change

7.0 64 -3dB 60 0dB 60 -2dB 2 Middle C's & 1
E | 7.0 5000 Very tight

pitch focus

'#' sign for VARIBANK2 information to come

Time Par1 Amp2 Par2 Amp3 Par3 Amp1 NB: Same number of pairs on each line

0 1 0.5 2.2 0.7 4.6532 0.5 Time + partial - amplitude_weight pairs

4.5 1 0.25 2.4 0.2 3.0 0.14 Put zero amp if you want to omit a given partial

The whole file (version for FILTER VARIBANK2) therefore looks like this:

0.0 53 -3dB 53 -3dB 53 -3dB

2.0 65 0dB 53 0dB 41 0dB

3.0 57 -6dB 54 -6dB 50 -6dB

4.5 67 -3dB 62 -3dB 59 -3dB

7.0 64 -3dB 60 0dB 60 -2dB

#

0 1 0.5 2.2 0.7 4.6532 0.5

4.5 1 0.25 2.4 0.2 3.0 0.14

Higher values for Q filter the sound more, which reduces overall
amplitude. Higher Q therefore
allows for and sometimes requires
higher gain levels. Similarly, lower values for Q 'let
through'
more of the original sound, so there is less amplitude reduction
through the filtering process, and
therefore more likelihood of overflows.
Higher values for hcount also increase the tendency to
overflow,
because there are more harmonics in the filter effect. These harmonics
enrich the
sound.

The data in the two files used in the above example were used in a
command line with Mode 2, a
gain of 20 and hcount's
of 6 and 12. Also try it without using hcount to hear the
difference. This
was the full command line:

filter varibank2 2 infile outfile datafile.txt qfile.txt
20 -h12

The input was a sustained trombone tone on F below Middle C, which is
why the filter frequency
began at MIDI note 53.

Mapping out the data with a little diagram may be helpful:

Vertical lines to mark the time points
A series of horizontal lines rising and falling towards
each time point (or not changing) to
indicate pitch levels
(use MIDI note values & Mode 2 unless exact
frequencies are crucial);
label the MIDI notes on your diagram.
Write an amplitude value in dB next to each pitch, possibly
in a different colour
Put 'tight' at the top left of your diagram and 'relaxed'
at the bottom left, in a different
colour: this is the
Q scale
Draw a line for changing Q in the Q colour,
changing direction – or staying the same – at
each time point.

Musical Applications

The facilities of FILTER VARIBANK are a composer's dream. Not only can
the frequencies of the
filterbank be specified in precise detail, but
the frequencies may move in time. Not only can the
tightness of the
filters – the degree to which they focus on pitches – be
specified, but this focus
can also change over time. The number of
harmonics and the amplitude 'rolloff' are also under
the composer's
control.

It is possible, therefore, to play with relationships between pitched
tones and complex sounds
with some degree of noise components. Working
with sounds accepts all kinds of sonic material
into the fabric of
musical discourse – but pitch need not be excluded simply because
a broader
range of materials is being used. A tool like FILTER
VARIBANK makes it possible gradually to
focus complex sonic material
into specific pitches, thus creating links with other pitched
elements, such as a broader harmonic scheme and the use of acoustic
musical instruments.

End of FILTER VARIBANK

FILTER VFILTERS – Make datafiles for fixed-pitch
FILTER VARIBANK filters

Usage

filter vfilters inpitchfile generic_outfilterbankfile

Parameters

inpitchfile – contains a list of MIDI Pitch Values or frequency pitch values, with one or more
values on each line

generic_outfilterbankfile – each line is converted into a data file for a pitched pitch(es) filter for
FILTER VARIBANK. The outfile names are whatever you put for generic_outfilterbankfile plus a
'0', '1', etc. appended, producing a different file for each line in inmidifile.

Understanding the FILTER VFILTERS Function

FILTER VFILTERS creates one or more data file(s) for the FILTER VARIBANK process from a list of
MIDI Pitch Values (MPV's), one file for each line of input. The output basic filterbank file is a fixed
(not time-varying) pitches filter. If the inmidifile is:

48 63.5 70 74 81

the generic_outfilterbankfile will be (edited here for conciseness):

[Time MPV Amp MPV Amp MPV Amp MPV Amp MPV Amp]

0 48 1 63.5 1 70 1 74 1 81	 1

10000 48 1 63.5 1 70 1 74 1 81	 1

The second line with time = 10000 means that the filter values given extend (without changing)
from 0 seconds to 10000 seconds (i.e., the end of the file). The program adds it because it needs
to have two time values in a varibank data file.

It actually doesn't matter whether the values in inmidifile are MIDI or frequency values. The
input is just treated as numbers which go into the output. If you put in what you think is MIDI,
the output will be in MIDI. If you put in what you think is frequency, the output will be frequency.
Many musicians find it easier to think of harmonies in the MIDI Pitch Value system, so this is
illustrated here. These MIDI Pitch Values, please note, may be fractional (microtonal).

Note that the data in VARIBANK filters can also be generated,
and transposed from the Sound
Loom Table Editor.

BATCHFILES can be expanded to use a sequence of different
values on the same, or a series of
different sources, using
the facilities in the Sound Loom Table Editor.

Musical Applications

FILTER VFILTERS will help you to generate data files for the FILTER VARIBANK process more
quickly.

End of FILTER VFILTERS

Last Updated 20 Mar 2021 -- HTML5 version

Documentation: Archer Endrich, revised Robert Fraser

© Copyright 1998-2014 Archer Endrich & CDP

file:///E:/CDP/DOCS/!PRINT/cgrofilt.htm#VARIBANK

