Composers'xtDesktop =Project

CDP "Wavecycle' DISTORT Functions

(with Command Line Usage)

Functions to DISTORT soundfiles via 'pseudo-
wavecycles'

DISTORT AVERAGE

Average the waveshape over N 'wavecycles'
CLIP

Clip a signal
DISTORT CYCLECNT

Count 'wavecycles' in soundfile
DISTORT DELETE

Time-contract soundfile by deleting 'wavecycles'
DISTCUT

Cut sound into elements with falling envelope
DISTMARK

Interpolate between waveset-groups at marked points
DISTMORE BRIGHT

Reorder sound segments in order of average zero-crossing rate
DISTMORE DOUBLE

Double (quadruple etc.) frequency of each waveset
DISTMORE SEGSBKWD

Reverse certain (sets of) segments
DISTMORE SEGZIG

Zigzag across tail segments or across whole soundfile
DISTORTT

Repeat wavesets within given duration
DISTREP

Timestretch soundfile by repeating wavesets
DISTSHIFT

Time-shift or swap wavecycles
DISTWARP

Warp wavecycles by a multiplier
DISTORT DIVIDE

Distortion by dividing 'wavecycle' frequency
DISTORT ENVEL

Impose envelope over each group of cyclecnt 'wavecycles'
DISTORT FILTER

Time-contract a sound by filtering out 'wavecycles'
DISTORT FRACTAL

Superimpose miniature copies of source 'wavecycles' onto themselves
FRACTAL WAVE

Fractally distort an input sound or wavecyle
DISTORT HARMONIC

Harmonic distortion by superimposing 'harmonics' onto 'wavecycles'
DISTORT INTERACT

Time-domain interaction of two sounds
DISTORT INTERPOLATE

Time-stretch file by repeating 'wavecycles' and interpolating between them
DISTORT MULTIPLY

Distortion by multiplying 'wavecycle' frequency



DISTORT OMIT

Omit A out of every B 'wavecycles', replacing them with silence
DISTORT OVERLOAD

Clip the signal with noise or a (possibly timevarying) waveform
DISTORT PITCH

Pitchwarp 'wavecycles' of sound
DISTORT PULSED

Impose regular pulsations on a sound
QUIRK

Distort signal by raising sample values to a power
DISTORT REFORM

Modify the shape of 'wavecycles'
DISTORT REPEAT

Timestretch soundfile by repeating 'wavecycles'
DISTORT REPEAT2

Repeat 'wavecycles' without time-stretching
DISTORT REPLACE

The strongest 'wavecycle' in a cyclecnt group replaces the others
DISTORT REPLIM

Timestretch by repeating 'wavecycles' (below a specified frequency)
DISTORT REVERSE

Cycle-reversal distortion in which the 'wavecycles' are reversed in groups
SCRAMBLE

Scramble waveset order randomly or by size and level
DISTORT SHUFFLE

Distortion by shuffling 'wavecycles'
SPLINTER

Create splinters by repeating & shrinking selected waveset-group
DISTORT TELESCOPE

Time-contract sound by telescoping N wavecycles into 1

SEE ALSO:
PARTITION
Partition a mono soundfile into disjunct files in blocks defined by groups of wavesets

Technical Discussion
Description of a 'Pseudo-wavecycle'
The Wavecycle DISTORT Functions
Richard Dobson's Introduction to the T Wishart Wavecycle Distort Functions

The aural results of the DISTORT and other WAVESET processes are highly variable, so the Musical
Applications sections below are notably sparse. You'll get the best results by experimenting yourself!



B

DISTORT AVERAGE - Average the waveshape over N
'wavecycles'

Usage

distort average infile outfile cyclecnt -mmaxwavelen -sskipcycles

Parameters

infile — soundfile to process (mono only)
outfile — output soundfile
cyclecnt — number of cycles over which to average (Range: > 1)

cyclecnt may vary over time.

-mmaxwavelen - maximum permissible wavelength in seconds (Default: 0.50)
-sskipcycles — (integer) number of wavecycles to skip at start of file

Understanding the DISTORT AVERAGE Process

DISTORT AVERAGE performs a mathematical averaging of the data in cyclecnt pseudo-
wavecycles. The effect is more akin to a loss of resolution than the blurring which might be
expected. Values below 10 retain some semblance of the original, while values of, for example,
100 seem to create a kind of 'sample hold' effect. For modest distortion, values 5 or less are
recommended.

Musical Applications

Mushy, watery, aspects of tracing, discrete sample-hold effects...

End of DISTORT AVERAGE



CLIP - Clip a signal

Usage

clip clip 1 infile outfile level
clip clip 2 infile outfile fraction

Modes

1 Clip signal at specified level
2 Clip half-waveforms at specified fraction

Parameters

infile — input soundfile
outfile — output soundfile
level — level in original signal at which to clip (Range: 0 to 1)
An error message is given if none of the original signal exceeds /evel.
fraction - fraction of original signal at which to clip (Range: 0 to 1; 1= no change)

Understanding the CLIP Process

Clipping a signal cuts off the top of the waveform when the level exceeds 100%, introducing
distortion. CLIP produces this distortion at lower signal levels.

In Mode 1, /evel sets the level at which to clip the signal. This acts as a gate value: if too high,
an error message may remind the user that the signal never reaches that level. If set lower, the
signal is raised (or appears to be raised) so that all values that exceed that level are clipped. (In
many cases, this may not result in an obvious distortion, because most of the signal may be
unclipped.)

In Mode 2, half-waveforms are clipped at a given fraction of the original. This seems to give a
more obvious distortion, even though the signal level appears to change little. Again, a lower
value produces more clipping and more distortion.

Musical Applications

End of CLIP



B

DISTORT CYCLECNT - Count 'wavecycles' in soundfile

Usage
distort cyclecnt infile
Parameters

infile — soundfile to examine (mono only)

Understanding the DISTORT CYCLECNT Function

DISTORT CYCLECNT checks the waveform of the infile for zero crossings, determining how many
segments lie between these crossings. It then displays this figure on screen.

Musical Applications

This information — the number of 'waveycles' in a file - can help predict the level of distortion a
given process might produce.

Knowing the total number of 'wavecycles' also enables you to set a suitable value for several
parameters found in the DISTORT programs.

End of DISTORT CYCLECNT



B

DISTORT DELETE -Time-contract soundfile by deleting
'wavecycles'

Usage

distort delete mode infile outfile cyclecnt -sskipcycles

Modes

1 One 'wavecycle' in every cyclecnt 'wavecycles' is retained
2 The strongest (single) 'wavecycle' in every cyclecnt 'wavecycles' is retained
3 The weakest (single) 'wavecycle' in every cyclecnt 'wavecycles' is deleted

Parameters

infile — soundfile to process (mono only)
outfile - output, time-contracted, soundfile
cyclecnt — groups of 'wavecycles': really the level of resolution at which the process will work

cyclecnt may vary over time.

-sskipcycles - (integer) number of 'wavecycles' to skip at start of file

Understanding the DISTORT DELETE Process

Mode 1 dramatically removes data from the infile, leaving very little behind. Mode 2, because it
sets out to retain the strongest (i.e., highest amplitude) 'wavecycle' in each set, retains more
recognisable features from the original. Mode 3 takes this further be deleting the weakest (i.e.,
lowest amplitude) 'wavecycle' in each set. The three Modes, therefore, enable the user to target
levels of recognisability.

Because the 'wavecycles' are of irregular lengths, the idea of 'resolution’ is only relative.
However, it helps picture the degree to which the infile is divided up into units. Then one
'wavecycle' from each of these units is retained or deleted according to the operation of each
mode.

The skipcycles parameter makes it possible to have this process begin some time after the start
of the sound, e.g., so that its start transient, so vital to the recognition of the source of a sound,
is not affected.

Musical Applications

This process achieves a time-compression and textural roughening of the source.

End of DISTORT DELETE



B

DISTCUT - Cut sound into elements with falling
envelope

Usage

distcut distcut 1 infile generic_outfilename cyclecnt exp [-climit]
OR
distcut distcut 2 infile generic_outfilename cyclecnt cyclestep exp [-climit]

Modes

1 Waveset-groups are adjacent
2 Set gap between waveset-groups

Parameters

infile — input soundfile (MONO)
outfile — output soundfile
cyclecnt - number of wavesets in each outfile (Range: 1 to 1000, up to the number in the infile.)
cyclestep (Mode 2) - number of wavesets steps from start of one group to start of next. (Range:
1 to 1000, up to the number in the infile.)
(In mode 1 : cyclestep = cyclecnt: waveset-groups are abutted and disjunct)
exp - envelope decay shape: 1 = linear, >1 = more rapid decay, <1 = less rapid decay
-climit - minimum level of output events to accept (in dB, e.g. 70 = -70dB).

Understanding the DISTCUT Process

DISTCUT cuts segments from the infile, producing multiple outputs, each with a falling envelope.
Segment lengths are set by groups of wavesets (cyclecnt), defined by zero-crossings. The decay
creates enveloped segments that do not end abruptly.

In Mode 1, segments are consecutive, wherease in Mode 2 they are separated by cyclestep,
which is the number of cycles from the start of one segment to the start of the next. The optional
parameter limit sets a gate level above which the segment must rise to be accepted.

DISTCUT is is closely related to ENVCUT, which extracts segments to a given length, also with a
falling envelope.

Musical Applications

DISTCUT may have uses in creating segments for TEXTURE, or for other creative mixes derived
from the same material.

End of DISTCUT



B

DISTMARK - Interpolate between waveset-groups at
marked points

Usage

distmark distmark 1 infile outfile marklist unitlen [-ststretch] [-rrand] [-f] [-t]
distmark distmark 2 infile outfile marklist unitlen [-ststretch] [-rrand] [-f]

Modes

1 Interpolate between waveset-groups at marked points
2 Interpolate within alternate marked blocks

Parameters

infile — input soundfile (MONO)

outfile — output soundfile (MONO)

marklist - list of times within source at which to find waveset-groups

unitlen - approximate size of waveset group to find (mS); can vary over time. (Range: 0.5 to
1000 mS)

Minimum unitlen < %2 of minimum step between times in marklist

-ststretch - timestretch distances between marks, in making output. (Range: 1 to 256)
-rrand - randomise duration of interpolated wavesets (Range: 0 to 1)

Randomisation decreases waveset lengths (heard 'pitch' is higher).

-f — Flip phase of alternate wavesets
-t — Add original (remaining) tail of source sound to output

Understanding the DISTMARK Process

DISTMARK interpolates between wavesets at marked times (marklist textfile). The aural effect of
this is a stream of short repeated segments, with one block merging into the next block. Mode 2
interpolates within alternate marked blocks.

Unitlen sets the approximate size of the waveset group to find and hence the speed of repetition.
Setting this too high may produce the CDP Error "Invalid Data". This is caused by infringing the
rule that unitlen must be < > the minimum step between times in the marklist. If unitlength is
very short (e.g. 20mS), the effect is more like synthesis, or LOOP with a short progression time,
and typically with a rather buzzy quality.

Tstretch stretches the overall output length of the process.

Musical Applications

End of DISTMARK



B

DISTMORE - A group of additional waveset distortion
programs

Sub-Group of 4:
DISTMORE BRIGHT DISTMORE DOUBLE DISTMORE SEGSBKWD DISTMORE SEGZIG

Usage

distmore NAME (mode) infile outfile (parameters)
where NAME can be any one of: bright double segsbkwd segszig
Type distmore bright for the Usage of distmore bright .. etc.

DISTMORE BRIGHT - Reorder sound segments in
order of average zero-crossing rate

Usage

distmore bright 1-3 infile outfile marklist [-ssplicelen -d]

Modes

Extract data ...

1 From Heads, & from Tails cut to segments, size approx equal to Heads
2 From Heads and Tails, as defined by marklist

3 From Tails only

Parameters

infile — input mono soundfile

outfile — output mono soundfile

marklist — a list of timemarks in source, marking (paired) Heads and Tails, e.g.: consonant onset,
and vowel continuation of source. (It is assumed that the first mark is at a Head segment.)
-ssplicelen - length of splice. (Range: 2 to 15 mS)

-d - output in decreasing order of brightness. (Default: increasing)

Understanding the DISTMORE BRIGHT Process

DISTMORE BRIGHT is one of many processes using wavesets — pseudo-cycles based on zero-
crossings. In this process, it re-orders elements based on the average zero-crossing rate.

Segments are selected from a datafile list of times (marklist). These are paired into what are
called 'Heads' and 'Tails': a Head is taken to mark a 'consonant' onset in the source and a Tail its
'vowel' continuation. The first mark is assumed to start a Head segment. At least two pairs of
time-values must be given.

Note that the -d flag produces a different order of segments.



Musical Applications

The process can be an effective way of re-ordering the elements in a sound. It is useful for the
list of times to match the onset of events in the source soundfile. For vocal sounds, this would
normally be the start of each syllable; in a melodic sequence, the start of each note; for

drumming, the start of each beat or drumstroke, etc. The program then successfully re-orders
the segments, splicing them together.

End of DISTMORE BRIGHT



B

DISTMORE DOUBLE - Double (quadruple etc.)
frequency of each waveset

Usage
distmore double infile outfile mult

Parameters

infile — input soundfile (MONO)
outfile — output soundfile (MONO)
mult - octave step up (Range: 1 to 4 octaves, possibly fractional)

Understanding the DISTMORE DOUBLE Process

DISTMORE DOUBLE is a variant of DISTORT MULTIPLY. Like the latter program, wavesets
(pseudo-wavecycles) are raised in frequency. However, depending on the material, the perceived
pitch may remain the same, but with an altered brightness.

Musical Applications

End of DISTMORE DOUBLE



B

DISTMORE SEGSBKWD - Reverse certain (sets of)
segments

Usage

distmore segsbkwd 1-9 infile outfile marklist

Modes

1 Reverse Tails

2 Reverse Heads

3 Reverse Head+Tail pairs

4 Reverse Head & Tail+Head+Tail set

5 Reverse Head+Tail+Head+Tail set

6 Reverse Head & Tail+Head+Tail+Head+Tail set

7 Reverse Head+Tail+Head+Tail+Head+Tail set

8 Reverse Head & Tail+Head+Tail+Head+Tail+Head+Tail set
9 Reverse Head+Tail+Head+Tail+Head+Tail+Head+Tail set

Parameters

infile — input soundfile (MONO)

outfile — output soundfile (MONO)

marklist — a list of timemarks in source, marking (paired) Heads and Tails, e.g., consonant onset,
and vowel continuation of source. It is assumed that the first mark is at a Head segment.

Understanding the DISTMORE SEGSBKWD Process

The process reverses selected segments given in a datafile list of times (marklist). The times are
paired into what are called Heads and Tails: a Head typically marks a consonant onset in the
source and a Tail its vowel continuation. It is assumed that the first mark is at a Head segment.
At least two pairs of time-values must be given. The various modes offer a wide range of Head
and Tails combinations.

As with DISTMORE BRIGHT, the Head and Tails principle can be applied to different types of
material, such as vocal syllables, notes in a melodic sequence, or drum beats.

A similar process DISTORT REVERSE also reverses groups of wavesets, but using a given
number of wavecycles. DISTMORE SEGSBKWD produces more coherent segments by identifying
them by times.

Musical Applications

DISTMORE SEGSBKWD is a reasonably effective way of reversing the elements in a sound,
without reversing their order. If followed by modify radical 1 (REVERSE), the elements are played
forwards, as in the source, but the order of elements is reversed.

End of DISTMORE SEGSBKWD



B

DISTMORE SEGZIG - Zigzag across tail segments or
across whole soundfile

Usage

distmore segszig 1 infile outfile marklist repets [-sshrinkto] [-pprop] [-1]
distmore segszig 2 infile outfile repeats [-sshrinkto] [-pprop] [-1]
distmore segszig 3 infile outfile repeats dur [-sshrinkto] [-pprop]

Modes

1 Zigzag across tail segments of a soundfile while playing it
2 Zigzag across entire soundfile
3 Zigzag across entire soundfile, specifying proportion of tail to use

Parameters

infile — input soundfile

outfile — output soundfile

marklist (Mode 1) - a list of times in source, marking (paired) Heads and Tails, e.g. consonant
onsets, and vowel continuations in source. (The first mark is assumed to be a Head segment). In
Modes 2 and 3, the whole file is processed.

repeats — number of zigzags. (Range: 1 to 64; can vary over time)

=sshrinkto - if set to zero, has no effect. Otherwise Zigzags contract to minimum size minsiz in
mS (Range 31 upwards).

dur (Mode 3) - duration of zig-zagged output (secs). (Range: from repeats+1 x File-length to 64
x infile-length)

=pprop — proportion of Tail to use. Default: all of it. (Can vary over time)

CARE: If the length of used-portion of any particular tail is too short, (less than
shrinkto size), zigs for that tail will not shrink.

-l - shrink zigs logarithmically (Default: linear shrink)

Understanding the DISTMORE SEGSZIG Process

DISTMORE SEGSZIG applies the idea of zig-zagging within a soundfile to waveset groups. Zig-
zagging (see esp. EXTEND ZIGZAG) involves playing a segment forwards and then backwards.
Like other processes within the DISTMORE program (BRIGHT and SEGSBKWD), this function can
use (in Mode 1) a list of times that are assumed to represent paired Heads and Tails of vocal
sounds: a Head typically marks a consonant onset in the source and a Tail its vowel continuation.
At least two pairs of time-values must be given and the first marker is taken to be a Head
segment. Repeats sets the number of repeats required (including the reversal). Dur (Mode 3
only) sets the outfile-length. The optional parameter shrinkto allows the zigzags to shrink to a
minimum size, while prop optionally allows less than 100% of the tail to be used.

Musical Applications

As with DISTMORE BRIGHT and SEGSBKWD, the Head and Tails principle can be applied to
different types of material, such as vocal syllables, notes in a melodic sequence, or drum beats.
It is useful to give the start times of these elements for Mode 1, but similar segments are
extracted in an "intelligent" way in Modes 2 and 3.

End of DISTMORE SEGSZIG



B

DISTORTT - Repeat wavesets within given duration

Usage

distortt repeat infile outfile gpcnt rpt offset dur [-t]

Parameters

infile — input soundfile (MONO)

outfile — output soundfile (MONO)

gpcnt - number of wavesets in the group to be repeated.

rpt - number of repetitions of each waveset group.

offset — time to skip before starting waveset process: sound in offset is prefixed before the
processed sound.

dur - required duration of output.

-t — telescope: skip wavesets so output is of similar size to input.

Understanding the DISTORTT Process

DISTORTT is a variant of DISTORT REPEAT and DISTREP. In this case, the outfile length is
specified directly, rather than as a number of wavesets. However, setting the -t flag produces an
outfile of similar length to the infile, by skipping some wavesets.

The offset parameter specifies how much of the source sound to keep before starting the
process.

Musical Applications

End of DISTORTT



B

DISTREP - Timestretch soundfile by repeating
wavesets

Usage

distrep distrep mode infile outfile multiplier ccyleccnt [-kskipcycles] [-ssplicelen]

Modes

1 Timestretch file by repeating 'wavecycles'
2 Repeat 'wavecycles', but skip cycles to avoid timestretch

Parameters

infile — input soundfile (MONO)

outfile — output soundfile (MONO)

multiplier — no. of times each wavecycle (group) repeats. (Range: 2 to 32767, integer)
cyclecnt - (integer) is the number of wavecycles in repeated groups. (Range: 1 to 32767)
-kskipcycles - number of cycles to ignore (skip over) at start of file. (Range: 0-32767)
-ssplicelen - mS splices of repeated blocks (Range: 0-50 mS; default 15 mS)

multiplier and cyclecnt may vary over time

Understanding the DISTREP Process

DISTREP is an updated version of DISTORT REPEAT, with the option of added splices between
repeated blocks.

The repetition of the 'wavecycles' stretches out the sound, making it both longer and more
granular in texture. This granularity is increased if (increasingly larger) groups of cyclecnt
'wavecycles' are used: then the whole group repeats multiplier times.

Musical Applications

Like DISTORT REPEAT, DISTREP produces long, grainy (distorted) sounds. The sense of stretching
out the original is very apparent.

As noted with DISTORT REPEAT, using a small group of cycles (e.g. 10 or less) and a large-ish
number of repetitions (e.g. 10-20), arbitrary melodies can arise. These could then be quantised
to a given scale with REPITCH QUANTISE.

End of DISTREP



B

DISTSHIFT - Time-shift or swap wavecycles

Usage

distshift distshift 1 infile outfile grpcnt shift
distshift distshift 2 infile outfile grpcnt

Modes

1 Shift alternate (groups of) half-wavecycles forward in time
(wrapping back around zero-time if pushed beyond sound end)
2 Swap alternate half-wavecycle (groups)

Parameters

infile — input soundfile (MONO)
outfile — output soundfile (MONO)
grpcnt - size of elements to operate on:

1 = single half-waveset

2 = 1 waveset + single half-waveset

3 = 2 wavesets + single half-waveset
etc.

(Range: 1 to 32767)

shift — move alternate groups forward by shift waveset(group)s. (Range: 1 to 32767)

Understanding the DISTSHIFT Process

DISTSHIFT shifts alternate wavesets (pseudo-wavecyles) in time or swaps them. The time-shift is
expressed as a number of half-cycles, which can vary from source to source. Large group sizes
create fairly random and radical exchanges of material.

Musical Applications

End of DISTSHIFT



B

DISTWARP - Warp wavecycles by a multiplier

Usage

distwarp distwarp 1 infile outfile warp
distwarp distwarp 2 infile outfile warp wavesetcnt

Modes

1 Warp-multiplier increments samplewise
2 Warp-multiplier increments wavesetwise.

Parameters

warp - (progressive) sample multiplier (Range: 0.0001 to 0.1).
wavesetcnt - the number of wavesets after which the warp value increments (Range: 1 to 100)

Understanding the DISTWARP Process

DISTWARP warps by applying a multiplier, either to each sample or to groups of wavesets. It
appears to emphasise amplitude (to be confirmed). In Mode 1 (samplewise), it can produce a
distinct pitch - especially towards the top of the warp range - this can be varied over time. In
waveset mode, the groups are accented and distorted.

Musical Applications

End of DISTWARP



B

DISTORT DIVIDE - Distortion by dividing 'wavecycle’
frequency

Usage
distort divide infile outfile N [-i]
Parameters

infile — input soundfile (mono only)

outfile — output soundfile

N - divider (Range: integer only, 2 to 16)

-i — use waveform interpolation: slower but cleaner

Understanding the DISTORT DIVIDE Process

Without altering duration, this process effectively lowers the sound while adding a rough texture.

Musical Applications

This is a useful form of distortion because it roughens the sound without being too violent about
it.

End of DISTORT DIVIDE



B

DISTORT ENVEL - Impose envelope over each group
of cyclecnt 'wavecycles'

Usage

distort envel 1-2 infile outfile cyclecnt -ttroughing -eexponent
distort envel 3 infile outfile cyclecnt troughing -eexponent
distort envel 4 infile outfile envfile cyclecnt

Modes

Rising envelope
Falling envelope
Troughed envelope
User-defined envelope

AWNR

Parameters

infile — input soundfile (mono only)
outfile — output soundfile
envfile — defines user envelope as time value pairs (Range of value is 0 to 1)

The time units in envfile are in fact arbitrary because in each case the envelope is
stretched to fit the duration of each cyclecnt set.

cyclecnt — number of 'wavecycles' under a single envelope

[-t]troughing - the trough depth of the envelope (Range: 0 [most troughed] to 1 [least
troughed], Default = 0)

-eexponent — exponent to shape envelope rise or decay

e < 1 will produce a curve which starts quickly and slows down
« > 1 will produce a curve which starts slowly and speeds up
* Omitting this parameter will result in a linear rise or decay

cyclecnt, troughing and exponent may vary over time.

Understanding the DISTORT ENVEL Process

The process takes the amplitude envelope data for each group of cyclecnt 'wavecycles' and
adjusts this data to form a single envelope shape (for that group) according to the mode
selected.



Musical Applications

The same pattern repeats (irregularly), being reasonably fine or quite coarse depending on the
size of cyclecnt. This can be likened to creating a somewhat irregular sawtooth edge on the
sound.

The exponent and envfile parameters can be used to customise/intensify the effect of the
enveloping.

Here are some possible results with different values for cyclecnt :

« Small values (1 - 3), can produce a timbral distortion of the source.

+ Medium values can produce a granular modification.

+ Very Large values (64+) can result in the superposition of a repeating envelope (e.g.,
like a tremolando). But, with a natural rather than a synthetic source, this is likely to have
a natural-sounding variability, due to the variable durations of the wavecycles which are
being counted.

« It is interesting to gradually increase the cyclecnt and hear the sound cross these
different perceptural boundaries.

One of the most telling applications of DISTORT ENVEL is to create irregular phasing effects. The
most important tool for this is a time-varying breakpoint file for cyclecnt, which can be used to
introduce large variations in the length of each envelope shape. If this is done in two different
ways (i.e., two different breakpoint files), then the two resultant (mono) files can be combined
with SUBMIX INTERLEAVE to form a stereo file with phased cyclecnt envelope shapes.

End of DISTORT ENVEL



B

DISTORT FILTER - Time-contract a sound by filtering
out 'wavecycles'

Usage

distort filter 1-2 nfile outfile freq [-sskipcycles]
distort filter 3 infile outfile freq1 freq2 [-sskipcycles]

Modes

1 Omit cycles below freg
2 Omit cycles above freg
3 Omit cycles below freq1 and above freqg2

Parameters

infile — input soundfile (mono only)

outfile — output soundfile

freq - frequency in Hz (Range: 10.0 to 22050.0)
freql - frequency in Hz to delete below

freq2 - frequency in Hz to delete above

* freq, freql and freqg2 may vary over time.

« NB: Time-varying freql and freqg2 may not cross each other, nor be equal.

* Freqg here relates simply to the length of a 'wavecycle'. A high value signifies a short
'wavecycle', and v.vs.

-sskipcycles — (integer) number of 'wavecycles' to skip at start of file

Understanding the DISTORT FILTER Process

Period and frequency are inverse functions. Therefore it is possible to relate the length of a
'wavecycle' to the frequency it would have were it to recur regularly. This program therefore
filters by removing 'wavecycles' shorter or longer than those relating to a specific, user-defined,
frequency.

The duration of the outfile is affected by this process: because 'wavecycles' are being removed,
the outfile will be shorter, by varying degrees.

Musical Applications

The aural effect of the DISTORT FILTER process is actually like gating. In gating, you can imagine
a horizontal line drawn through the time/amplitude display of a soundfile. If the peaks above the
line are retained (by filtering out lower frequencies), you just hear them (joined up). Similarly, if
you filter out above the line, the peaks are gone, leaving the lower sound material (joined up).

The difference here is that the process is operating on 'pseudo-wavecycles' according to their

length, so here the results are more unpredictable and also distort the sound to some degree,
depending on where the horizontal line - the frequency variable(s) - is drawn. Technically, the
process is akin to low-, high- and band-pass filters, but aurally it is more like gating.

You can therefore use this procedure to cut out some and distort other material in a sound.

End of DISTORT FILTER



B

DISTORT FRACTAL - Superimpose miniature copies of
source 'wavecycles' onto themselves

Usage

distort fractal infile outfile scaling loudness [-ppre_attenuation]

Parameters

infile — input soundfile (mono only)

outfile — output soundfile

scaling — (integer) division of scale of source wave (Range: 2 to sample_rate/2)

loudness - loudness of scaled component relative to source (Loudness of source is reckoned to
be 1.0)

scaling and loudness may vary over time.

-ppre_attenuation - apply attenuation to infile before processing

Understanding the DISTORT FRACTAL Process

Note the very wide range of scaling. Because it is a divisor, the larger the value of scale the
shorter will be the miniature copies to be superimposed.

These superimposed copies can be made to increase (be careful!) or decrease in amplitude with

the loudness parameter. Using a value of 1.0 maintains the original amplitude of the infile, which
will be heard as pretty much as the original, but with the superimpositions on top of it. Loudness
is therefore a means of balancing the input and the processed sound components.

Musical Applications

This is a powerful and somewhat wild tool for producing distortion effects. The higher the value of
scaling, the more the superimposed copies appear as a sheen of distortion above the original
sound.

End of DISTORT FRACTAL



B

FRACTAL WAVE - Fractally distort an input sound or
wavecyle

Usage

fractal wave 1 inf outf shape [-mmaxfrac] [-tstr] [-iwarp] [-s] [-0]
fractal wave 2 inf outf shape dur [-mmaxfrac] [-tstr] [-iwarp] [-s]

Modes

1 Fractally distort soundfile by transposition
2 Generate fractal wave from (mono) input wavecycle

Parameters

infile(Mode 1) - input soundfile (1 or more channels)

or (Mode 2) wavecycle (such as that generated by WAVEFORM
outfile — output soundfile

shape - breakpoint textfile of:

+ (Mode 1): time and transposition pairs, defining the contour of the largest fractal shape
Time: 0 to file-length (secs); transposition: -12.0 to +12.0 (semitones)

+ (Mode 2) time and MIDI-pitch pairs, defining the contour of the largest fractal shape.
Times start at zero and increase; final time indicates duration of pattern; MIDI: 0 to 127
(value at final time is ignored)

dur (Mode 2) - Output duration (Range: 1-7200 secs)
-mmaxfrac - maximum degree of fractalisation (time-variable). If not set (or zero), fractalisation
proceeds until the minimum possible wavelength is reached.
Range: 0-1000, but 10 is a safer maximum to avoid "too high MIDI pitch" error.
-tstr - time stretch of fractal pattern (time-variable) Range: 1.0 to 2.0. If zero, no timestretching
is done.
-iwarp - interval warping of fractal pattern (time-variable). If set to zero, no warping is done.
-s - shrink pitch-intervals as fractal time-scales shrink
-0 - breakpoint data read using time in outfile (Default: use time in infile).

Understanding the FRACTAL WAVE Process

In Mode 1, FRACTAL WAVE distorts the whole soundfile by adding transposed versions of shape
data. In Mode 2, where the input is a wavecycle, it generates fractals using MIDI-pitch data (in
shape) to define the pitch shape. Both versions of the shape are timed. Transposition happens

over the total duration specified in shape and is then repeated over every resulting sub-unit of
the pattern, over every sub-sub-unit, etc. until the smallest time-unit is reached.

The process may best be understood by taking a steady-pitched source and experimenting first
with Mode 1, then extracting a wavecycle from the source using WAVEFORM and applying it to
Mode 2.

In Mode 1, the output length is conditioned by the infile; in Mode 2, it is supplied by the user
(dur). The fractal pattern may optionally be timestretched (str) and/or interval-warped (warp).

See also the spectral version FRACTAL SPECTRUM.

Musical Applications

End of FRACTAL WAVE



B

DISTORT HARMONIC - Harmonic distortion by
superimposing 'harmonics’' onto 'wavecycles'

Usage

distort harmonic infile outfile harmonics-file [-ppre_attenuation]

Parameters

infile — input soundfile (mono only)
outfile — output soundfile
harmonics-file = contains harmonic_number amplitude pairs

« The amplitude of the source sound is taken to be 1.0
« Amplitude range: 0.000031 to 32.0
« Harmonics range from 2 to 1024

-ppre_attenuation - apply attenuation to infile before processing

Understanding the DISTORT HARMONIC Process

Harmonic distortion multiplies and adds within a single 'wavecycle' - possibly several times. For
each harmonic_number in the harmonics-file, DISTORT HARMONIC scales and copies the shape
of the 'wavecycle' harmonic_number times and adds the result to the original at the given
amplitude (relative to that of the infile). This is by direct analogy to harmonic additive synthesis,
in which a complex pitched sound is created by adding sinusoidal partials. Indeed, DISTORT
HARMONIC can be used for just this purpose by using a sine wave as input.

There is no internal scaling of harmonic amplitude values. It will be necessary in many cases to
scale the infile with the prescale parameter to avoid overflow. Prescale is a multiplier, like an
ordinary gain factor. (See the Gain — dB Chart).

Musical Applications

The higher 'harmonics' of the 'wavecycles' are heard as faster versions superimposed on the
original 'wavecycle' and on the lower 'harmonics'. Therefore, the application is to add these
higher and denser levels of distortion to the sound.

End of DISTORT HARMONIC



B

DISTORT INTERACT - Time-domain interaction of two
sounds

Usage

distort interact mode infilel infile2 outfile

Modes

1 Interleave 'wavecycles' from the two infiles
2 Impose 'wavecycle' lengths of 15t file on 'wavecycles' of 2nd

Parameters

infile1 - input soundfile number 1 (mono only)
infile2 - input soundfile number 2 (mono only)
outfile — output soundfile

Understanding the DISTORT INTERACT Process

In Mode 1 material from both soundfiles is audibly apparent due to the interleaving process. In
Mode 2, the distortion is almost total: the alteration of the 'wavecycle' lengths of the second
sound changes it to a burbly, bubbly, seething mass.

Musical Applications

DISTORT INTERACT can be used to achieve distortion which combines data from two different
sounds or distortion which totally alters a sound.

End of DISTORT INTERACT



B

DISTORT INTERPOLATE -Time-stretch file by
repeating 'wavecycles' and interpolating between
them

Usage

distort interpolate infile outfile multiplier [-sskipcycles]

Parameters

infile — input soundfile (mono only)
outfile — output soundfile
multiplier — (integer) number of times each 'wavecycle' repeats

multiplier may vary over time.

=sskipcycles — (integer) number of 'wavecycles' to skip at start of file

Understanding the DISTORT INTERPOLATE Process

With this process, the shape of a 'wavecycle' is transformed into that of the next over multiplier
repetitions. Note that this is waveshape-based interpolation, not a spectral interpolation, and that
the length of the 'wavecycle' is also transformed by the process.

The effect of the transformation is drastic, leading to a strongly granular outfile. The length of the
outfile increases in step with the value of multiplier, as does the apparent pitchiness.

Musical Applications

The interpolation process adds a modulatory quality to the output, so that the successive
wavecycles gliss and bend as they flow into one another. Even so, as multiplier increases, the
perception of separate 'grains’, i.e., 'wavecycles' increases. A value of 32, for example, changes
the sound to a strange stream of modulating tones.

End of DISTORT INTERPOLATE



B

DISTORT MULTIPLY - Distortion by multiplying
'wavecycle' frequency

Usage
distort multiply infile outfile N [-s]
Parameters

infile — input soundfile (mono only)

outfile — output soundfile

N — multiplier (Range: 2 to 16, integer only)
-s — smoothing (try this if glitches appear)

Understanding the DISTORT MULTIPLY Process

The duration of the sound is not changed, only the frequency of the 'wavecycles', with the result
that the pitch rises.

Musical Applications

The distortion is relatively mild, in that the original sound remains recognisable. However, the
surface is textured and the pitch rises with each increase in the value of N. DISTORT MULTIPLY
can be used, for example, to create high, modulating, grainy vocal sounds.

End of DISTORT MULTIPLY



B

DISTORT OMIT - Omit A out of every B 'wavecycles’,
replacing them with silence

Usage

distort omit infile outfile A B

Parameters

infile — input soundfile (mono only)

outfile — output soundfile

A - number of 'wavecycles' to omit

B - size of group of 'wavecycles' out of which to omit A 'wavecycles'

A may vary over time, but must always be less than B.

Understanding the DISTORT OMIT Process

Because the omitted 'wavecyles' are replaced by silence, the overall duration of the sound does
not change. The larger the proportion of 'wavecycles' omitted from B, of course, the more
distorted the the sound becomes. This distortion is like a rough texturing, rather than the highly
modulatory results of some of the other processes.

Musical Applications

This process can be used, therefore, to achieve a rough texturing with no loss of duration.

End of DISTORT OMIT



DISTORT OVERLOAD - Clip the signal with noise or a
(possibly timevarying) waveform

Usage

distort overload 1 infile outfile clip-level depth
distort overload 2 infile outfile clip-level depth freq

Modes

1 Clip signal
2 (Clip and add waveform

Parameters

infile — input soundfile (mono only)

outfile — output soundfile

clip-level — level at which the signal is to be clipped (Range: 0 to 1) The signal level is
renormalised after clipping.

depth - depth of the pattern of distortion imposed on clipped stretches of the signal. (Range: 0
to 1)

freq - frequency of the waveform imposed on clipped stretches of the signal

clip-level, depth, and freq may vary over time.

Understanding the DISTORT OVERLOAD Process

The clip-level parameter is rather like a 'gate' level. If the signal level is already high, anything
over, for example, 0.1 is likely to push it into distortion, and values considerably higher than this
will make it heavily distorted. However, if it only distorts, Trevor advises me, when it reaches a
level of, for example, 0.99, it is not going to be distorted very often.

The sound doesn't actually have amplitude overload, because it is distorted by 'slicing off' the top
(clipping) where it would have overloaded. The sound becomes loud and 'strained’, like a voice
which is shouting too loudly.

Mode 2 can add an extra ringing sound as the value for freg gets higher, e.g., 2000Hz and
beyond.

Musical Applications

Given the trials made so far, this can be a fairly subtle effect, but the words 'straining’, 'loud’,
'uncompromising' seem appropriate as the amplitude gets pushed towards the top of the range.

End of DISTORT OVERLOAD



B

DISTORT PITCH - Pitchwarp 'wavecycles' of sound

Usage

distort pitch infile outfile octvary [=ccyclelen] [=sskipcycles]

Parameters

infile — input soundfile (mono only)

outfile — output soundfile

octvary - maximum possible transposition up or down in (fractions of) octaves (Range > 0.0 to
8.0)

Note that the pitch of each 'wavecycle' is varied by a random amount within the
range of octvary octaves up to octvary octaves down: i.e., the value for octvary
covers a total up/down range of 2 * octvary.

-ccyclelen - mamimum number of 'wavecycles' between the generation of transposition values
(Range: > 1, Default: 64)

octvary and cyclelen may vary over time.

-sskipcycles - (integer) number of 'wavecycles' to skip at start of file

Understanding the DISTORT PITCH Process

The random up/down movement of the 'wavecycles' within the total octvary range produces a
great deal of bending of the sound, especially if the original alters its pitch a good deal. It is
better, therefore, to start with relatively small values for octvary - e.g., less than 1 - so that you
start to use this function with some degree of control over the results.

The full power of DISTORT PITCH doesn't really come into its own until time-varying parameters
are used, especially for cyclecnt. Large values for the latter will serve to slow down the rate of
change.

Musical Applications

DISTORT PITCH is useful for creating 'flexitones' (to coin a term) - with distortion, of course.

End of DISTORT PITCH



B

DISTORT PULSED - Imposed regular pulsations on a
sound

Usage

distort pulsed 1 infile outfile env stime dur frq frand trand arand transp tranrand [-s -e]
OR
distort pulsed 2-3 infile outfile env stime dur frq frand trand arand cycletime transp tranrand [-s -e]

Modes

1 Impose impulse-train on source
2,3 Use a segment of the source as the looped content of a synthetic impulse-train

Parameters

infile — input soundfile (mono only)

outfile — output soundfile

env - breakpoint envelope of impulse. This will be scaled to the duration needed.

stime - time in the source sound where the impulses begin. In Mode 3, stime is given as
samplecnt, i.e., number of samples

dur - length of time that the impulses continue

frg — number of impulses per second

frand - number of semitones by which to randomise the frequency of the impulses

trand - amount of time in seconds by which to randomise the relative time positions of amplitude
peaks and troughs from impulse to impulse

arand - randomisation of the amplitude shape created by the peaks and troughs from impulse to
impulse

cycletime — Mode 2: duration in seconds of wavecycles to grab as sound substance inside the
impulses

OR Mode 3: number of wavecycles to grab as sound substance inside the impulses

transp - transposition contour of sound inside each impulse

tranrand - randomisation of transposition contour from impulse to impulse

-s — keep start of source sound, before impulses begin (if any)

-e - keep end of source sound, after impulses end (if any)

Process only works on MONO files

Understanding the DISTORT PULSED Process

Distort a sound by imposing a series of impulses on the source, or on a specific waveset segment
of the source. An impulse is like a brief event created by a sharp envelope on the sound. The
sound inside the impulse might glissando slightly, as if whatever is causing the impulsion has
warped the sound by its impact.

End of DISTORT PULSED



B

QUIRK - Distort signal by raising sample values to a
power

Usage

quirk quirk 1-2 jnfile outfile powfac

Modes

1 Apply power factor over amplitude range of individual half-wavesets
2 Apply power factor over amplitude range of entire signal

Parameters

infile — input soundfile (MONO).

outfile — output soundfile.

powfac — exponent. (Range: 0.01 to 100; <1 exaggerates signal contour; >1 smooths signal
contour.)

Understanding the QUIRK Process

QUIRK introduces distortion into a signal by raising sample values to a power. The power factor
(powfac ) is applied to individual half-wavesets (pseudo half-cycles) or to the whole file. powfac
values less than 1 tend to flatten the tops of the waveform, while values >1 tend to narrow the
waveform shape, modifying the timbre accordingly. With higher values of powfac (e.g. >5), the
signal is in danger of disappearing altogether; however, this is also a simple means of finding the
times of its most prominent peaks.

Quirk may be compared with Cross-modulation (modify radical 6), which produces similar
distortion if the signal is multiplied with itself.

Musical Applications

End of QUIRK



B

DISTORT REFORM - Modify the shape of 'wavecycles'

Usage

distort reform 1-7 infile outfile
distort reform 8 infile outfile exaggeration

Modes

Convert to fixed level square wave
Convert to square wave

Convert to fixed level triangular wave
Convert to triangular wave

Convert to inverted half-cycles
Convert to click stream

Convert to sinusoid

Exaggerate waveform contour

ONOUVNHLhWNER

Parameters

infile — input soundfile (mono only)
outfile — output soundfile
exaggeration — exaggeration factor (Range: 0.000002 to 40.0)

exaggeration may vary over time.

Understanding the DISTORT REFORM Process

This process reads each 'wavecycle' (sound inbetween zero crossings) and replaces it with a
different waveform of the same length. Several waveform options are provided. Those which do
not fix the amplitude level respond to the varying amplitude levels of each successive wavecycle,
thus producing an additional (and arbitrary) distortion feature.

The 'fixed level' options produce consistently loud output.

The 'click' option replaces each 'wavecycle' with a mishmash of square pulses several samples
long (random sizes), which sounds a bit like a rattle.

The 'sinusoid’ option, as might be expected, is relatively smooth. It is actually a subtle form of
filtering. The sine waves vary in length and amplitude because they are based on 'wavecycles'
and because only some of the 'wavecycles' are replaced.

The 'exaggeration’ option just seems to add a surface buzz.

Musical Applications

Modes 1 and 3 create quite vigorous forms of distortion. The other modes are more restrained,
offering a variety of gently distorted versions of the original.

End of DISTORT REFORM



B

DISTORT REPEAT - Timestretch soundfile by
repeating 'wavecycles'

Usage

distort repeat infile outfile multiplier [-ccyclecnt] [-sskipcycles]
Example command line:

distort repeat infile outfile 5 -c3 -s20

Parameters

infile — input soundfile to process (mono only)

outfile - soundfile output after processing

multiplier - number of times (integer) each 'wavecycle' (group) repeats
-ccyclecnt — number of 'wavecycles' (integer) in repeated groups
-sskipcycles — number of 'wavecyles' (integer) to skip at start of file

multiplier and cyclecnt may vary over time.

Understanding the DISTORT REPEAT Process

The repetition of the 'wavecycles' stretches out the sound, making it both longer and more
granular in texture. This granularity is increased if (increasingly larger) groups of cyclecnt
'wavecycles' are used: then the whole group repeats multiplier times.

Musical Applications

DISTORT REPEAT produces long, grainy (distorted) sounds. The sense of stretching out the
original is very apparent.

A significant application of DISTORT REPEAT is that, by increasing the cyclecnt factor, one crosses
the pitch-perception boundary: that is, starting with a noisy sound in which all the wavecycles
are randomly different, one ends up with, for example, 7 repetitions of the same wavecycle,
followed by 7 of another and so on — and each of these comprise sufficient repetitions for us to
hear pitch. Thus the noise source becomes a string of pitch beads, each of arbitrary timbre. With
a cyclecnt of, for example, 128, one can even get a slowish random melody.

End of DISTORT REPEAT



B

DISTORT REPEAT2 - Repeat 'wavecycles' without
time-stretching

Usage

distort repeat2 infile outfile multiplier [-ccyclecnt] [-sskipcycles]
Example command line:

distort repeat2 infile outfile 10 -c10 -s©

Parameters

infile — input soundfile to process (mono only)

outfile - soundfile output after processing

multiplier - number of times (integer) each 'wavecycle' (group) repeats
-ccyclecnt — number of 'wavecycles' (integer) in repeated groups
-sskipcycles — number of 'wavecyles' (integer) to skip at start of file

multiplier and cyclecnt may vary over time.

Understanding the DISTORT REPEAT2 Process

Repeating the 'wavecycles' without time-stretching (as in DISTORT REPEAT) enables you to
increase the strength of the distortion with the multiplier parameter without making the output
file any longer than the original. Larger values for cyclecnt increases the length of infile that is
affected.

Musical Applications

Higher values for multiplier increase the distortion, while higher values for cyclecnt increase the
length of infile that is processed as one unit.

Thus we could have:

« a low value for multiplier coupled with a high value for cyclecnt - this will produce a bit of
distortion while the source remains recognisable

« a high value for multiplier coupled with a low value for cyclecnt - this will produces a great
deal of distortion, but the effect is limited because only a few cycles are affected as a unit

+ high values for both parameters - this appears to create the most distortion

End of DISTORT REPEAT2



B

DISTORT REPLACE - The strongest 'wavecycle' in a
cyclecnt group replaces the others

Usage

distort replace infile outfile cyclecnt [-sskipcycles]

Parameters

infile — input soundfile (mono only)
outfile — output soundfile
cyclecnt - (integer) size of group of 'wavecycles'

cyclecnt may vary over time.

-sskipcycles — number of 'wavecyles' (integer) to skip at start of file

Understanding the DISTORT REPLACE Process

The replacing action serves to simplify the sound. Note that the single strong 'wavecycle' in the
group will take the place of several others, which will be deleted. This simplification becomes
extreme when the cyclecnt is high, leading to a 'sample-hold' kind of stepped effect. Time-
varying cyclecnt makes it possible to introduce gradual change.

Musical Applications

With DISTORT REPLACE we can achieve a simplification of the sound, up to very clear 'sample-
hold' type stepped tones.

End of DISTORT REPLACE



B

DISTORT REPLIM - Timestretch by repeating
'wavecycles' (below a specified frequency)

Usage

distort replim infile outfile multiplier [-ccyclecnt] [-sskipcycles] [-fhilim]

Parameters

infile — input soundfile (mono only)

outfile — output soundfile

multiplier — the number of times each wavecycle (group) repeats (Integer)
-ccyclecnt - the number of wavecycles in repeated groups

-sskipcycles — the number of wavecycles to skip at the beginning of the soundfile
-fhilim - the frequency below which cycles are counted

multiplier and cyclecnt may vary over time
NB: Works only on MONO soundfiles.

Understanding the DISTORT REPLIM Process

This function is like DISTORT REPEAT, but with a slight change. Here the length of wavecycle to
be affected can be set. Thus, if you set a mid-range frequency, only those below that frequency
will repeat, and the others (above the frequency) will be discarded (filtered out). Hence the name
'REP-LIM', meaning 'repeat (with a) limit'.

DISTORT REPLIM is therefore like a filtering program that also repeats wavecycles. In the
DISTORT set, the wavecycles are wavelengths that occur between zero crossings, so distortion
also occurs.

It is helpful to remember that wavelength is inversely proportional to frequency. Wavelength is
the actual physical length of the oscillation, and frequency is the number of cycles that occur in
one second (i.e., Hertz). These two aspects of sound are inversely proportional to one another: P
= 1/f. For example, a sound oscillating at 100 Hz will have a period, i.e., a wavelength of 1/100
meters = 0.01 meters (0.39 inch). A sound oscillating at 1000Hz will have a wavelength of
1/1000 meters = 0.001 meters (0.039 inch).

Short wavecycles are therefore higher in pitch and long ones are lower in pitch. When the
frequency setting for DISTORT REPLIM is high, the filter point is set higher and more of the
sound will be retained. Here we are dealing with 'pseudo-wavecycles' (portions of soundfile
between zero crossings), which is what introduces distortion into the equation.

Musical Applications

The net result of the function is to create repetition distortion while filtering out a user-definable
amount of the higher frequencies. Remember that the relative amounts of high and low
frequencies in the infile will affect the results.

End of DISTORT REPLIM



B

DISTORT REVERSE - Cycle-reversal distortion in
which the 'wavecycles' are reversed in groups

Usage

distort reverse infile outfile cyclecnt

Parameters

infile — input soundfile (mono only)
outfile — output soundfile
cyclecnt — number of 'wavecycles' in a reversed group (Range: > 0)

cyclecnt may vary over time.

Understanding the DISTORT REVERSE Process

Here the original soundfile is grouped into a series of 'wavecycles' with cyclecnt 'wavecycles' in
each group. Then each of these groups of 'wavecycles' is reversed.

The term 'distortion' here is something of a misnomer, because no distortion process is applied to
the 'wvecycles' themselves. Instead, cyclecnt sets the number of 'wavecycles' which are to be
copied in reverse as a group to the outfile. For example, if cyclecnt = 3, 15 'wavecycles' reversed
in groups of 3 will assume the order: 3-2-1, 6-5-4, 9-8-7, 12-11-10, 15-14-13. Thus, not only is
the sound material backwards, but the reversed 15t 'wavecycle' is now adjacent to the reversed
6th 'wavecycle'.

This mimics the classical tape studio technique of cutting up a length of tape into segments (of
varying lengths), reversing the segments, and joining up the reversed pieces.

The result will be similar to a random brassage because of the differing lengths of the
'wavecycles'.

The process moves steadily through the infile from beginning to end, so the normal order of the
(reversed) events is preserved. It is surprising how normal the output can be. With mid-range
values for cyclecnt (say, 30 to 100), one hears the original breaking up, but only with very large
values for cyclecnt does one hear the sound sweeping backwards in large swathes. Again, it is a
question of 'resolution’: the size of the units being manipulated.

Musical Applications

A small value for cyclecnt will produce a grainy result, mid-values a 'broken up' result, and large
values swathes of reversed sound. If the value for cyclecnt exceeds the number of 'wavecycles' in
the infile, you will be told that the "sound source is too short...". DISTORT CYCLECNT returns
the number of 'wavecycles' in a sound, should you want to provide a value for cyclecnt which is
right up to the limit.

Reversing the output of DISTORT REVERSE turns the cyclecnt groups back the other way while
reading the whole soundfile from back to front, producing an interesting mixture of forwards and
backwards!

Using the time-varying option for cyclecnt provides an opportunity for dramatic or gradual
changes in the output.

End of DISTORT REVERSE



B

SCRAMBLE - Scramble waveset order randomly or by
size and level

Usage

scramble scramble 1-2 infile outfile dur seed [-ccnt] [-ttrns] [=aatten]
scramble scramble 3-4 infile outfile seed [-ccnt] [-ttrns] [-aatten]
scramble scramble 5-8 infile outfile cuts seed [-ccnt] [-ttrns] [-aatten]
scramble scramble 9-10 infile outfile seed [-ccnt] [-ttrns] [-aatten]
scramble scramble 11-14 nfile outfile cuts seed [-ccnt] [-ttrns] [-aatten]

Modes

Reassembly is:

In random order.

In permuted random order (all wavesets used before any are re-used).
In order of increasing size (falling pitch).

In order of decreasing size (rising pitch).

In order of increasing size, in each segment.
In order of decreasing size, in each segment.
In order of increasing then decreasing size.
In order of decreasing then increasing size.
In order of increasing level.

10 In order of decreasing level.

11 In order of increasing level, in each segment.
12 In order of decreasing level, in each segment.
13 In order of increasing then decreasing level.
14 1In order of decreasing then increasing level.

CONGOCUAL,WNER

Parameters

infile — input soundfile (MONO).

outfile — output soundfile (MONO).

dur - duration of output file. (Range: 1 to 7200 secs)

cuts - textfile of (increasing) times in source: process in each separate segment. (Range: >0 to

file-length)
seed - random seed; same seed with same random parameters gives same output. (Range: 0 to
256)

=ccnt — number of wavesets in waveset-groups to be scrambled. (Range: 1 to 256)
-ttrns — range of any random transposition of wavesets. (Range: 0 to 12 semitones)
-aatten - range of any random attenuation of wavesets. (Range: 0 to 1)

Understanding the SCRAMBLE Process

As the name suggests, this process scrambles the order of wavesets (pseudo-wavecycles):
randomly and by size and level. The fourteen modes set out the various possibilities. Some
modes use a cuts datafile of times to define the segments. These can be set to the start of each
segment that might be re-positioned. There is scope for optional random transposition and
attenuation.

Musical Applications

End of SCRAMBLE



B

DISTORT SHUFFLE - Distortion by shuffling
'wavecycles'

Usage

distort shuffle infile outfile domain-image [-ccyclecnt] [-sskipcycles]

Parameters

infile — input soundfile (mono only)

outfile — output soundfile

domain - set of letters representing consecutive (groups of) 'wavecycles'
image - set of letters which forms some permutation of the domain set

Items from domain may be reordered, omitted or duplicated.
A typical domain could be abcd

A typical image might be aacccbdd or dccbba or dac etc.
The domain and image sets must be connected with a dash
« Full example: abcd-aacccbdd

-ccyclecnt - the size of 'wavecycle' groups to process: each character in domain-image
represents cyclecnt groups of 'wavecycles' (Default: 1)

cyclecnt may vary over time.

=sskipcycles — number of 'wavecyles' (integer) to skip at start of file

Understanding the DISTORT SHUFFLE Process

A simple reordering in which domain and image have the same number of characters will suitably
roughen up the sound. As the image duplicates characters, some time-stretching will occur.

Introducing higher cyclecnt values will mean that the infile is processed in larger units, increasing
the recognisability of the original. Note that, in spite of the higher cyclecnt, time-stretching does
not result — unless domain characters repeat in the image.

Thus, a domain-image of abc-cba would be:
3-2-1, 6-5-4 etc.
but with a cyclecnt of 5,

« a would comprise 1-2-3-4-5 (in the domain)
« b would comprise 6-7-8-9-10 (in the domain)
e ¢ would comprise 11-12-13-14-15 (in the domain)

and the image c-b-a would now be:
11-12-13-14-15, 6-7-8-9-10, 1-2-3-4-5 - 26-27-28-29-30, 21-22-23-24-25,
16-17-18-19-20

Note how the cyclecnt 'wavecycles' proceed sequentially forward in the file, even though the
image involves a reversal of the domain. This is what produces the increased recognisability.



Musical Applications

The possibilities focus here on sculpting the roughness of the distortion along with time-stretch
factors. Lots of room for playing with the image shapes.

End of DISTORT SHUFFLE



B

SPLINTER - Create splinters by repeating & shrinking
selected waveset-group

Usage

splinter splinter 1-4 nfile outfile target wcnt shrcnt ocnt p1 p2
[-eecnt] [-sscv] [-ppcv] [-ffrg |-ddur] [-rrand] [-vshrand] [-i] [-I]

Modes

1, 3 Splinters lead into the original sound. Mode 1: splinters change pitch.
2, 4 Splinters emerge from the original sound. Mode 2: splinters change pitch.

Parameters

infile — input soundfile.
outfile — output soundfile
target - time in the source immediately before the desired waveset group. (Range: 0 to file-
length secs.)
wcnt — number of wavesets used to create the splinter group. Must be < frg in 'length’' (if frg
used)
(Range: 1 to 256; maximum length 1 minute)

shrcnt — number of waveset-group repeats that are shrunk. (Range: 2 to 256)
ocnt - number of maximally-shrunken splinters beyond the shrink shrct. (Range: 0 to 256)
pl - pulse-speed of waveset repetitions at the originating waveset (Range: 0 to 50 Hz).

If zero, Pulse-speed 1 is determined by the duration of the selected waveset-group (wcnt).
p2 — pulse-speed at end of repetitions (shrcnt+ocnt splinters away). (Range: 0 to 50 Hz)

If zero, Pulse-speed 2 = Pulse-speed 1.
-eecnt — number of extra regular pulses beyond shrcnt+ocnt. (Range: 0 to 10000)
-sscv - shrinkage curve. (Range: 0.1-10; 1 = linear, >1 contracts more rapidly near originating
waveset, <1 less rapidly)
-ppcv - pulse-speed curve. (Range: 0.1-10; 1 = linear, >1 accelerates more rapidly near
originating waveset, <1 less rapidly)
-ffrg (Modes1+2) - approx. frequency (1/wavelength) of maximally-shrunk splinters. (Range:
1000 Hz-Nyquist/2; default: c.6000 Hz)
-ddur (Modes3+4) - approx. duration of maximally-shrunk splinters (Range: 5 to 50 mS).
-rrand - randomisation of pulse timing; may vary over time. (Range: 0 to 1)
=vshrand - randomisation of pulse shrinkage; may vary over time. (Range: 0 to 1)
=i — mix all source into output. (Default: source used only where there are no splinters.)
-I - mix none of source into output.



Understanding the SPLINTER Process

SPLINTER cuts a short segment from the soundfile (at or near target) and repeats it as pulses,
shrinking and optionally transposing it on each repetition. This pulsed portion is either followed
by the reset of the soundfile (Modes 1,3) or precedes it (Modes 2,4). Alternatively, the option
NOT to mix any of the source (flag -I) will just give the pulsed segment. In Modes 1 and 2, the
splinters also change pitch.

The segment length is a group of pseudo-cycles (wcnt), so may be a bit hard to predict. Shrcnt
and ocnt determine the number of pulses - those that are shrunk and those after the shrinkage,
while ecnt can extend this number further. Pulse-speeds 1 (p1) and 2 (p2) set the speed of
repetition, which can be arranged so that the repetitions speed up or slow down; if p1 is zero,
the speed is taken from the waveset group length wcnt . The speed of pulse and shrinkage can
be skewed by pcv and scv, respectively.

Modes 1 and 2 gradually change pitch with each repetition; Modes 3 and 4 do not. Frg optionally
sets a goal frequency to reach. In this context, the group of cycles has a notional 'frequency’' (see
also other waveset processes affecting frequency); if this exceeds frg, a CDP Error is raised.

Optional parameters include duration (dur, Modes 3 and 4), which sets the length of maximally
shrunk splinters; rand and shrand, which randomize pulse and shrink timing, respectively.

Musical Applications

End of SPLINTER



B

DISTORT TELESCOPE - Time-contract sound by
telescoping N wavecycles into 1

Usage

distort telescope infile outfile cyclecnt [-sskipcycles] [-a]

Parameters

infile — input soundfile (Mono only)
outfile — output soundfile
cyclecnt — the number of 'wavecycles' in a group

cyclecnt may vary over time.

-sskipcycles — number of 'wavecyles' (integer) to skip at start of file
-a - telescope to an average 'wavecycle' length (Default: telescope to the longest 'wavecycle'
length)

Understanding the DISTORT TELESCOPE Process

Although at first rather like DISTORT OMIT, here the 'wavecycles' are not deleted as such.
Instead, they are superimposed (i.e., mixed) onto each other, with shorter 'wavecycles' being
stretched to fit the longest one in each group of cyclecnt 'wavecycles'. The outfile will usually be
much shorter than the infile and can be reduced to a mere blip with this process.

The -a flag tells the program to telescope to the average 'wavecycle' length, rather than to the
longest. Since the longest 'wavecycle' in each group is compressed by this method, the outfile
will be even shorter.

Musical Applications

Interesting results can be achieved with small values for cyclecnt, the output tending to have a
'mushy’ quality. It responds well to pitched material, producing a singing, if mushy, tone.

End of DISTORT TELESCOPE



B

Technical description of a 'Pseudo-wavecycle’

A pseudo-wavecyle is a way of dividing up the whole signal by taking chunks which stretch from
one zero-crossing, through a second to a third. The reason these divisions of the signal are
called 'pseudo’ is because these segments of the waveform do not necessarily correspond to real
wavecycles.

For example, a possible true wavecycle (corresponding to the fundamental of a pitch) of a sound
might cross the zero more than twice, as in Figure 1. But this divides into two pseudo-
wavecycles, as in Figure 2. Note that each of these pseudo-wavecycles crosses the zero at three
points.

Pseudo-wavecycles - igure 1 Pseudo-wavecycles - Figure 2

For more technical discussion of these processes, see Richard Dobson's
Introduction to the T Wishart DISTORT Functions



B

Introduction to the T Wishart
'Wavecycle' DISTORT Functions

by Richard Dobson

About the Wavecycle DISTORT Functions

These '"Wavecycles' are pseudo
Predictability Factors

Phase Relationships
Experimental

Musical Applications

Pseudo-wavecycles: a non-linear process

These functions have in common a graphical approach to sound transformation. That is to say, whereas
orthodox time-domain transformation techniques apply some mathematical modification to successive
samples (see, for example, ring modulation with MODIFY RADICAL), these DISTORT functions take as their
basis the concept of the 'wavecycle', i.e., the set of samples between two sucessive zero crossings.

They are therefore highly non-linear, in the sense that the output of one of these DISTORT functions depends
on the waveform contour of the infile. This contour does of course reflect the general sonic nature of the
infile - a simple periodic sound will have regular, clearly defined and similar wavecycles, whereas a noisy or
otherwise complex sound will be seen as a chain of wavecycles each different in shape, amplitude and
duration.

The functions therefore take an essentially 'granular' view of a soundfile, much as a graphic artist might view
an image as a set of variably-sized pixels (picture elements). Composers working with granulation techniques
should find them especially interesting. While they can be applied to any sort of source sound, the most
controlled and predictable results (given that they can often be impossible to predict!) are likely to be
obtained from source sounds designed for the purpose of applying granular transformations.

For a simple geometric waveform such as a sine or triangle wave, the size of a wavecycle will indeed
correspond to the true wavelength (or 'instantaneous pitch') of the input signal, but for more complex (i.e.,
wiggly) sounds, periodic or otherwise, it can be expected to vary widely and irregularly, as multiple zero-
crossings within a single period of the infile are counted (erroneously, in a sense) as complete wavecycles in
their own right. Therefore, although it is true to say that, the higher the pitch of the infile, the greater the
number of wavecycles in each second, it is not completely true. Rather, there will be AT LEAST that many,
and probably many more. In short, no general advice can be given about cyclecount parameter values, as
these will depend almost entirely on the nature of the infile.



Predictability Factors

The factors determining the degree of predictability in using these functions may be summarized as follows:

e High predictability:

o

0O O O O O

Simple geometric waveforms - sine, triangle, etc

Simple periodic waveforms — upper partials weaker than fundamental

Low rates of change in the above - simple vibrato or tremolo

Heavily low-pass filtered sounds

Output from DISTORT OMIT, DISTORT REVERSE, DISTORT SHUFFLE (see below)
Use of large wavecycle groups.

e Medium predictability:

o

0O 0 0 0 0 0 o

Periodic waveforms with one or more partials stronger than the fundamental - many acoustic
intrumental sounds

Moderately low-pass filtered sounds

Presence of transients — instrumental attacks, noise

Fast or irregular modulation

'Granular' sounds

Low level of noise

Phase shifts

Use of medium-length wavecycle groups (brassage rates)

» High to impossible predictability:
o Inharmonic sounds - bells, etc

0O 0O 0 0 o

High levels of noise

Rapid or chaotic transients

Speech

Dominant high frequencies

Processing confined to single wavecycles.

Phase Relationships

In a periodic (pitched) sound, the phase relationships between individual harmonic partials will often
determine the number of zero-crossings internal to a period. Thus two soundfiles, identical apart from some
(ofen inaudible) differences in phase, can lead to widely different outfiles when distorted by the same
function. Note also that the wavecycle technique, while 'accurate' for simple pitched sounds, shows a
deliberate disregard for phase or other forms of discontinuity, resulting in the introduction of various forms of
mostly mild transient distortion (glitches) in the outfile. These may of course be desired, but in perhaps the
majority of cases some form of filtering will need to be applied.

Given the graphic nature of these functions, it follows that inspection of outfiles and prospective infiles with a
graphic display of the soundfile will help in understanding how a particular function works, and also in
predicting the effect a function will have.



B

Experimental, with minimal error-checking

As is the nature of experimental software, error checking is kept to a minimum. Some essential tests are
made, for example to avoid division by zero and similar hazards. Beyond these, few constraints are imposed
on parameter ranges. It is especially important to remember the fact that you are working with digital
samples - trying to envelope wavecycles in high frequency signals (where a wavecycle may only amount to a
handful of samples) cannot be expected to produce predictable results. A 'robust' function might set a lower
limit on the length of a wavecycle, but none of these functions do so - the only method is to use DISTORT
FILTER (see below) to remove wavecycles below a user-defined cut-off length.

In almost all situations, therefore, putting prospective sounds through a strong low-pass filter such as
FILTER LOHI will minimize unpleasant distortion and maximize interesting and attractive transformations. It
follows that it is also worth using the highest possible sample rate.

Musical Applications

There are two primary uses for these functions. The first is simply to apply more or less extreme distortion or
granulation to a specific infile. The second is the development of granular textures through the manipulation
of wavecycles - infiles are thought of as 'libraries' or databases of wavecycles. It is important to develop a
clear strategy for using a sequence of distort functions. A key stage in this strategy might well be step one:
to create a soundfile of KNOWN WAVECYCLE CHARACTERISTICS.

Note that there are two general types of distort function: those that operate on individual wavecycles
(DISTORT DIVIDE, DISTORT FRACTAL,DISTORT HARMONIC, DISTORT INTERACT), and the rest,
which work on or output groups of wavecycles. DISTORT MULTIPLY also outputs groups of wavecycles
when multiplying the wavecycle frrequency. Considerable flexibility can be obtained if the size of each group
is highly composite (.e.g., a power of 2), so that 'groups within groups' can be manipulated. Note the use of
a several linked DISTORT operations in the following procedures.

For example, weak wavecycles can be removed (DISTORT OMIT, DISTORT DELETE,DISTORT REPLACE).
The remainder might be repeated with interpolation (DISTORT INTERPOLATE) to form larger groups,
which are then reordered (DISTORT SHUFFLE) or enveloped (DISTORT ENVEL).

Alternatively, they might be enveloped first, and the resulting wavecycles reordered or repeated. A short
section might be removed (SFEDIT CUT) and interpolated (DISTORT INTERPOLATE) over a long range, to
create a timbrally simple file which might then be the source for a new sequence of operations, such as
fractal or harmonic transformation (DISTORT FRACTAL, DISTORT HARMONIC).

Finally, it is well worth exploring the potential of the function DISTORT PITCH to colour vocal sounds.
Voices can be made higher and lighter or deeper and more growley, either all at once or over a period of
time.

Last updated: 2 May 2001
© 1996 Richard Dobson & CDP

Last Updated 28 Apr 2023 for CDP8
Documentation: Archer Endrich, revised R.Fraser
© Copyright 1998-2023 Archer Endrich & CDP



