Composers'xtDesktop =Project

CDP BLUR (Time) Functions

(with Command Line Usage)

Functions which BLUR (Time) analysis data

BLUR AVRG
Average spectral energy over N adjacent channels
BLUR BLUR
Blur the spectral data over time
CALTRAIN
Time-blur the upper spectral channels
BLUR CHORUS
Add random variation to amplitude or frequency in analysis channels
BLUR DRUNK
Modify sound by a drunken walk along analysis windows
BLUR NOISE
Add noise to spectrum
BLUR SCATTER
Randomly thin the spectrum
SELFSIM
Replace spectral windows with the most similar, louder window(s)
BLUR SHUFFLE
Shuffle analysis windows according to a specific scheme
BLUR SPREAD
Spread spectral peaks
BLUR SUPPRESS
Suppress the most prominent channel data
SUPPRESS PARTIALS
Suppress the most prominent partials in the frequency band indicated
BLUR WEAVE
Weave amongst the analysis windows in a specified pattern

Technical Discussion
Analysis Windows

B

BLUR AVRG - Average spectral energy over N
adjacent channels

Usage

blur avrg infile outfile N
infile — input analysis file made with PVOC

outfile — output analysis file
N - no. of adjacent channels - must be <= half the no. of channels in the infile.

N may vary over time

Understanding the BLUR AVERAGE Process

The averaging of energy information causes high energy data to cross channels. The result is the
intrusion of timbral data into channels which previously didn't have that data. Test results led to
a 'roughening’' of the sound, though without going as far as distorting it.

Note that this process relates to channels, not to windows (as does the BLUR BLUR process). This
means that the averaging directly affects the frequency components of the sound.

The energy (amplitude) in adjacent channels is averaged out over Average-span adjacent
channels, without affecting the frequencies of those channels. The result is to broaden, or

defocus, any energy peaks in the spectrum.

This reduces the frequency definition of the sound, which is why it is in the BLUR category and is,
in effect, a type of filtering.

Musical Applications
BLUR AVRG appears to be useful to enrich the timbre of a sound and make its texture rougher.

End of BLUR AVRG

BLUR BLUR - Time-average the spectrum

Usage

blur blur infile outfile blurring

infile — input analysis file made with PVOC
outfile — output analysis file
blurring - the number of windows over which to average the spectrum

blurring may vary over time: provide the name of a time blurring breakpoint file for
this parameter.

Understanding the BLUR BLUR Process

BLUR BLUR time-averages the spectrum. It 'blurs' detail in the time dimension by interpolating
between the spectral envelope values of the start and end windows blurring windows. Note that it
is not interpolating continuously over all the windows inbetween, just between the data in the
start and end windows. The overall result is somewhat affected by just how different the data is
in these two windows. The interpolation process produces a 'straight line' (linear) scale of values
between the start and end points.

BLUR BLUR differs from HILITE BLTR in the absence of the 'trace' parameter. This means that
the blurring occurs without any reduction in the number of partials.

Musical Applications

As with all of these programs, the result is greatly affected by the nature of the input sound. The
more windows blurred, the more blurring or smoothing of the sound you might expect to happen.
However, you might not notice much difference if the sound is already constant (or similar at the
start and end points). You will probably need a sound with a great deal of internal change for the
blurring to have a perceptible effect.

The musical results of this process begin with a softening of the attack transients, so is highly
effective with, for example, plucked or percussive sounds. A time-varying transition from the
original to a very blurred effect can be achieved by a simple breakpoint file which sets a low
value for blurring at the beginning of the sound and a high value at the end. It is possible for the
sound to disappear gradually into its own ambience. This powerful technique can therefore useful
in the creation of 'ambient' music, as well as any degree of softening of the original sound.

Also see: HILITE BLTR and HILITE TRACE.
End of BLUR BLUR

B

CALTRAIN - Time-blur the upper spectral channels

Usage

caltrain caltrain inanalfile outanalfile blurfact blurabov [-llocut]

Parameters

inanalfile — input analysis file

outanalfile — output analysis file

blurfact - time over which the upper part of the spectrum is blurred (Range: 0 to end-of-file)
blurabov - Frequency above which the spectrum is blurred (Range: 0 to sample-rate/2, e.g.
22050)

[-llocut] - Frequency below which bass is cut off. (Range: 0 to sample-rate/2; default: no bass
cutoff)

Understanding the CALTRAIN Process

CALTRAIN appears to be a variant of BLUR, affecting partials above a given frequency. The result
is normally a roughening or distortion of the sound in its upper frequencies.

Musical Applications

End of CALTRAIN

B

BLUR CHORUS - Chorusing by randomising amplitudes
and/or frequencies of partials

Usage

blur chorus 1 infile outfile aspread
blur chorus 2-4 infile outfile fspread
blur chorus 5-7 infile outfile aspread fspread

Modes

Randomise partial amplitudes

Randomise partial frequencies

Randomise partial frequencies upwards only

Randomise partial frequencies downwards only

Randomise partial amplitudes AND frequencies

Randomise partial amplitudes, and frequencies upwards only
Randomise partial amplitudes, and frequencies downwards only

NOUNL,WNE=

Parameters

infile — input analysis file made with PVOC

outfile — output analysis file

aspread - maximum random scatter of partial-amps (Range 1-1028)
fspread - maximum random scatter of partial-frgs (Range 1-4)

aspread and fspread may vary over time

Understanding the BLUR CHORUS Process

Formerly SPECHORU, this process attempts to achieve a chorusing effect by randomising the
amplitude and frequency values of the partials. It is based on an idea of Stephen McAdams. See
his Spectral Fusion and the Creation of Auditory Images (1981).

If very large amplitude aspread values are used, the sound will turn to noise. The ranges shown
for aspread and fspread appear to be rather extreme, but they are rescaled within the program.
There is in fact no mathematical limit to the values which can be entered. In practice, the
'chorusing' effect itself is achieved by values just a little above 1!. Values of 2 or 3 begin to
create a granular effect, and values of 10, 100 and 1000, for example, create more and more
noise.

Musical Applications

'Chorusing' is one of the standard effects used to enliven and enrich a sound. It becomes
available here in an open-ended context, where the effect can be driven beyond the usual bounds
into granulation and noise effects, useful when a certain textural or gritty quality is needed.

In Mode 5, a burbly but comprehensible vocal transformation may occur with aspread = 30 and
fspread = 4.

End of BLUR CHORUS

B

BLUR DRUNK - Modify sound by a drunken walk along
analysis windows

Usage

blur drunk infile outfile range starttime duration [-z]

Parameters

infile — input analysis file made with PVOC

outfile — output analysis file

range -the maximum step (in windows) for the drunken walk: <= 64

starttime- the time (in seconds) in the file at which the walk should begin

duration- the required duration of the outfile after re-synthesis it may be longer than infile
-z eliminates zero steps (window-repeats) in the drunken walk

Understanding the BLUR DRUNK Process

Beginning at starttime, a user-defined point in the infile, BLUR DRUNK moves through the file
reading windows, but jumping either forwards or backwards, from one window to another, in a
random way. The size of these random jumps cannot be greater than range. This random process
is known as a drunken walk. It proceeds until the specified duration of the output sound has been
generated.

If the process tries to leap right out of the soundfile at its end or its start, it is automatically
reflected back into the sound near to the leap point. The process never reads backwards through
the file, though it may leap backwards before starting its next read.

Musical Applications

This process can be used to lurch about in a soundfile, producing a jumbled version of infile to
varying degrees. The salient parameter is range. If range is small, the output will tend to linger
around your start-point in the file, progressing very slowly away from it in an arbitrary direction.
This results in a mix of time-stretching and slow wandering through the source. If range is large,
the drunken walk tends to leap about wildly in the file, scrambling the source sound.

End of BLUR DRUNK

BLUR NOISE - Put noise in the spectrum

Usage

blur noise infile outfile noise

Parameters

infile — input analysis file made with PVOC
outfile — output analysis file
noise — Range 0 (no noise in spectrum) to 1 (spectrum saturated with noise)

noise may vary over time

Understanding the BLUR NOISE Process

This functions enables one to move a sound source towards pure noise, by making the data in
every channel - most of which is actually low level noise - equally loud. Total saturation will
reduce all sounds to a very similar noise signal. Partial or gradual saturation is possible, through
the use of values less than 1 or by using a time-varying breakpoint file. These work in the usual
way, with gradual change between different time points to which are assigned different noise
values.

Musical Applications

This technique can be used to cause sound material to emerge from obscurity to clarity, or v.vs..
Also, a carefully chosen noise factor can be used to colour a sound or soften its edges.

End of BLUR NOISE

B

BLUR SCATTER - Randomly thin out the spectrum

Usage

blur scatter infile outfile keep [-bblocksize] [-r] [-n]

Parameters

infile — input analysis file made with PVOC

outfile — output analysis file

keep — number of (randomly chosen) blocks to keep in each spectral window (Range: 1 to no. of
chans.)

=bblocksize - frequency range of each block (default is width of 1 analysis channel. (Rounded
internally to a multiple of channel width.)

-r number of blocks actually selected is randomised between 1 and keep

-n turn OFF normalisation of resulting sound

keep and blocksize may vary over time

Understanding the BLUR SCATTER Process

This function throws away a specified proportion of the analysis data in each window. Unlike
HILITE TRACE, the channels chosen to be suppressed are selected entirely at random. The
spectrum is thus thinned out in an unpredictable fashion.

Remember that the number of channels in an analysis file is determined by the value for the -N
flag of the Phase Vocoder (now referred to as -cpoints). For example, if it was -c1024, there will
be 512 + 1 channels, each containing frequency and amplitude data.

Before scattering, the channels are gathered together into blocks of adjacent channels, and these
blocks-of-channels are then either retained or discarded (at random).

Blocksize sets how many of these channels form one block. Keep sets how many of these blocks
(i.e., groups of channels) will be randomly chosen and retained from the total of 513.

The values for keep and blocksize therefore need to be worked out in relation to the value given
for -c. For example, retaining keep = 10 and blocksize = 6 will retain a total of 60 (randomly
selected) channels from the analysis data.

Musical Applications

The musical result will be more variable than HILITE TRACE. The latter retains the N loudest
channels, thus always keeping the most audibly prominent data of the original sound. BLUR
SCATTER may or may not pick up audibly prominent data as it makes its random selections. The
original sound material will therefore be more variably retained or cast aside, and this variability
can be increased by using a time keep and/or a time blocksize breakpoint file.

End of BLUR SCATTER

B

SELFSIM - Replace spectral windows with the most
similar, louder window(s) of the same analysis file

Usage

selfsim selfsim inanalfile outanalfile self-similarity-index
Example command line to expand the area of similar windows :

selfsim selfsim in.ana out.ana 2

Parameters

inanalfile - input (mono) analysis file

outanalfile — output (mono) analysis file

self-similarity-index — the number of similar windows to replace. Value = 1 uses the loudest
window to replace the most similar window, then the next loudest window to replace the window
most similar to it, and so on, with appropriate overall-loudness scaling. With value = 2, the
loudest windows replaces the two most similar windows, and so on. Thus, if window A replaces
window B, and window C is most similar to window B, then window A also replaces window C,
etc.

Understanding the SELFSIM Process

This process systematically replaces spectral windows that are less prominent (i.e.,not as loud,
no special peaks ...) with spectral windows in the same file that are more prominent in some way
and are the most similar to them in spectral envelope . At the same time it scales amplitudes for
any overall difference between the two windows.

Musical Applications

It is important to observe the effect of higher values for the self-similarity-index. You might
describe this program as a feature repeater. On the one hand it is looking for prominent windows
and extending their presence in the sound. On the other hand, these prominent windows are also
examined for similarity of spectral envelope. Thus the features of this spectral envelope are
repeated more often in the resulting sound - hence the 'self-similar' idea. The overall effect is
going to depend on the nature of the prominent windows, and one can expect that a fairly
steady-state sound will not be much affected by this process. Try it on exciting sounds!

End of SELFSIM

B

BLUR SHUFFLE - Shuffle order of analysis windows in
file

Usage

blur shuffle infile outfile domain-image grpsize

Parameters

infile — input analysis file made with PVOC

outfile — output analysis file

domain-image - this consists of two strings of letters, separated by a hyphen ('-'); the first string
is the domain and the second string is the image, e.g., 'abc-abbabcc'.

The domain letters represent a group of consecutive infile analysis windows, e.g.,
'abcd'.

The image is any permutation of, or selection from, these domain letters these
letters may be omitted or repeated in the image string, e.g., 'aaaaaaaadaaa’.

grpsize - the number of analysis windows corresponding to each letter of domain.

Each letter then represents a group of grpsize windows and the whole group is
treated as one unit in the shuffling process.

Understanding the BLUR SHUFFLE Process

SHUFFLE shuffles windows in a PVOC analysis data file. This is a spectral version of 'brassage’
(see MODIFY BRASSAGE and MODIFY SAUSAGE). As with most of these programs, the
degree of audible difference is going to depend on how much the sound changes in the first
place. Shuffling spectral windows in a fairly uniform sound may not have much effect.
Experimenting with this program ought to lead to the unexpected.

To illustrate how this works, suppose there is a domain of three letters: A B C. This means that
there will be three consecutive windows, numbered 1 2 3 in the order in which they occur in the
analysis file.

If the image is ordered C B A, then these three windows will be rearranged in the output into the
order 3 2 1.

grpsize has not been set in this example, so the default of 1 is operating. If we then set grpsize
to, say 3, the A will stand for 3 windows, starting with 1 2 3, B for windows 4 5 6, and C for
windows 7 8 9. When the shuffling takes place according to the Image CBA, the result will be 7 8
9,456, 12 3. The process continues in this way throughout the analysis file. Larger values for
grpsize (e.g., 20) can lead to the repetition of fragments of sound material. The following table
summarises these inputs.

BLUR SHUFFLE EXAMPLE

| Domain | Image ||Groupsize|
| aABC | cBA || 3 |
[123 456 789|(789 456 123 |

The command line for the above would be:
blur shuffle infile outfile ABC CBA 3

Note that the size of the domain and the value for grpsize are limited by the amount of RAM
available on your computer.

Musical Applications

The domain-image parameter is what makes SHUFFLE particularly useful. The domain identifies a
series of consecutive windows, and the image defines the order of those windows (some may be
omitted). Then this whole pattern repeats as a block, affecting each consecutive set of windows
in the source file. The control over re-ordering makes it possible to jumble, retrograde, mix
forwards and backwards etc. the successive windows. An increasing grpsize makes more of the
source audible at any given time, which means that one can play with the degree to which the
source can be identified.

Thus one is stepping through the source in chunks of varying size and re-ordering the contents of
those chunks. The re-orderings play with familiarity, create repeatable sub-patterns, and will lead
to additional timbral changes depending on the degree to which differing spectral data get mixed

together.

End of BLUR SHUFFLE

B

BLUR SPREAD - Spread peaks of spectrum,
introducing controlled noisiness

Usage

blur spread infile outfile -fN | =pN -i [-sspread]
Parameters

infile — input analysis file made with PVOC

outfile — output analysis file

-fN extract formant envelope linear frequency-wise, using 1 point for every N equally-spaced
frequency channels

-pN extract formant envelope linear pitch-wise, using N equally-spaced pitch bands per octave
-i quicksearch for formants (less accurate)

-sspread degree of spreading of spectrum (Range 0-1; Default is 1).

spread may vary over time

Understanding the BLUR SPREAD Process

This process introduces noise into the spectrum in a way which is coherent with (i.e., related to)
the spectral envelope. The spectral envelope (formants) in each window is retained, and the level
in every channel is made to approximate this average spectral contour to a greater or lesser
extent, depending on spread. This process tends to exaggerate the less prominent (noise)
constituents of the spectrum.

Musical Applications

This is a distortion technique which can be handled in a very sensitive manner because spread
can be so finely adjusted, or altered in a time-varying manner. If applied to speech, the noise
introduces a certain edginess, so if an effect such as unvoiced speech is sought, FORMANTS
VOCODE is recommended, which allows some low or high frequency filtering.

End of BLUR SPREAD

B

BLUR SUPPRESS - Suppress the N loudest partials (on
a window by window basis)

Usage

blur suppress infile outfile N

Parameters

infile — input analysis file made with PVOC
outfile — output analysis file
N - the number of spectral components to reject

N may vary over time

Understanding the BLUR SUPPRESS Process

This process is the opposite of HILITE TRACE, which retains the N loudest partials. Whereas
with TRACE many components have to be removed before the sound starts to be seriously
affected, here the change to infile will be more immediate when a relatively small value for N is
used.

Musical Applications

The loudest partials will not necessarily relate to either the higher or lower parts of the frequency
spectrum. They will relate simply to whatever is most audible prominent in the sound, such as
possibly the fundamental of a pitched sound. This will have the effect of revealing the more
strictly timbral aspects of the sound.

This process can also be useful in preparing a sound for another process which will benefit from
suppressing its more audible features. As an example of this, ... (I did a sound in which I couldn't
get rid of the fundamental, which was reinforced by the process, when I really wanted to bring
out other things.)

Also see: HILITE TRACE and HILITE BLTR.

End of BLUR SUPPRESS

B

SUPPRESS PARTIALS- Suppress the most prominent
partials in the frequency band indicated

Usage

suppress partials inanal outanal timeslots lofrq hifrg chancnt

Parameters

inanal - input analysis file

outanal - output analysis file

timeslots - datafile of (from-to) time-pairs between which bands are suppressed.

lofrg — low frequency limit of band where partials to be suppressed. (Range: 5 to 22050 Hz)
hifrg — high frequency limit of band where partials to be suppressed.(Range: 5 to 22050 Hz)
chancnt - number of most prominent analysis channels in band to be suppressed. (Range: 1 to
no. of channels, e.g. 513)

Understanding the SUPPRESS PARTIALS Process

SUPPRESS PARTIALS suppresses the most prominent partials in a specified frequency band, at
given times. Lofrqg and hifrq set the lower and upper limits of the frequency band, while chancnt
gives the number of spectral channels in that band that you wish to suppress. The timeslots
datafile gives the times that these are to be suppressed. For the whole file, enter 0 and its
approx. end time.

Care must be taken in setting the number of channels (chancnt) correctly to avoid a CDP Error.
Divide the frequency band by the channel bandwidth (for the PVOC resolution in use) to give the
number of channels in the band.

Suppressing the normally weaker upper partials will make very little difference to the sound. The
greatest timbral change is through selective high-pass filtering, that is, in eliminating some of the
lower partials, under 1000Hz.

SUPPRESS PARTIALS expands the provision of the earlier BLUR SUPPRESS, which suppresses the
most prominent N partials, channel by channel.

Musical Applications

SEE ALSO: HILITE TRACE, HILITE BLTR, BLUR SCATTER, BLUR SUPPRESS,
End of SUPPRESS PARTIALS

B

BLUR WEAVE - Modify sound by weaving amongst
analysis windows

Usage

blur weave infile outfile weavfile

Parameters

infile — input analysis file made with PVOC

outfile — output analysis file

weavfile contains a list of integers which define successive steps (in windows) through the input
file. The start window is always numbered '0'. Steps may be forward or backwards, adding the
positive or negative integer of the weave formula to the number of the window at which one has
arrived to show which will be the next window selected (see tables below). The step sequence is
repeated until the end of the infile is reached.

The weave must obey the following rules:

RULE 1: NO step can exceed 127 forwards or -128 backwards

RULE 2: NO window reached in a weave can be BEFORE the start window
of the weave.

RULE 3: FINAL window must be AFTER the weave start window.

Otherwise, weave may be forward or backward, or remain at same
window.

Understanding the BLUR WEAVE Process

BLUR WEAVE is similar to SHUFFLE but is a smoother process which plots a regular course
through the analysis windows, weaving backwards and forwards as instructed by the weavfile.
Note that the weave process enables one to jump to points forwards or backwards in the
soundfile, at which point it takes a single window. Thus one of the keys to understanding WEAVE
is to realise that it only takes one window at a time after it has moved somewhere. It doesn't fill
in with the windows inbetween. The weavfile therefore creates a sequence of single windows
taken from various points relative to the start window. This is what makes it a form of brassage
in the spectral dimension. The pattern in the weavfile then repeats, starting from the window it
has now reached.

BLUR WEAVE can shorten or lengthen a sound:

Shorten: suppose 3 windows are selected in a way which spans a total of 7 windows.
For example, the weave pattern 3, -1, 5, starting from window 0 will take 3 steps,
thus moving to window 3 (and selecting it for use in the outanalysisfile), move back
one (3-1=2) and take window 2, and move forward 5 (2+5=7) and take window 7.
Thus only 3 out of the 7 possible windows are written to the outfile, making the latter
shorter by a ratio of 3:7.

new window count E E z E
o] 1]

OEEEE

BENEN

3] 3] [

source window |——r—r—r—
Bl

s]

s [

7T 5]

weaVvfile produces?eacaﬁy_

0.43

Lengthen: suppose a few windows are used over and over (the hovering effect
mentioned above), such as with the step pattern2-11-11-11-11 2. Here 3
windows are expanded to 10, a ratio of 10:3.

new window count EEZEEEEEEE 10
of [I
BRI EYREYNETE

source window E:E_E:E:E:E
EREEENE NN
OEENERERENEE

weavfile produces expansion by 3.33

Musical Applications

WEAVE can be used to shorten or extend a sound and/or to blur its characteristics: by taking
windows out of sequence, earlier (backwards) or later (forwards) in the source. Windows taken
from relatively distant locations of course mix up the sound quite a bit. A very different effect is
achieved by having the windows hover around a certain area. The fact that the pattern repeats
leads to additional possibilities to create pulsations in the sound, though the timbral effect is
likely to vary due to changing spectral content as the weave moves through the source.

End of BLUR WEAVE

Technical Discussion of Analysis Windows

These various functions to shuffle windows provide a tremendously varied set of tools with which to re-
pattern the stream of analysis data. Before comparing them to one another, let's take a moment to revise
just what a window is and just what of the original sound it encapsulates.

A window contains the spectral data in all the channels for a given duration of infile. If the number of
samples used for the window is 1024 (indicated by the -cpoints flag - formerly the -N flag), then the number
of channels is 1024 divided by 2 (= 512) plus an extra channel (= 513).

This number divided by the sample rate gives the duration of one window. E.g., 512/44100 = 0.01163 sec.
The hamming window usually used envelopes these samples in a certain way to maximise amplitude but
avoid clicks by starting from and returning to 0. (The windows are made to overlap in order to avoid holes
created by the enveloping.) Therefore, shuffling windows means moving about these little chunks of time,
with all the timbral data - the changing frequency/amplitude content contained therein. The new
juxtapositions of this timbral data are likely to lead to new colours in the output sound.

A brief overview of the SHUFFLE functions can help to clarify how they differ, and therefore what one may
expect to gain by using each of them.

DRUNK
jump about within specific spans of file, always reading forward, and change the location of these
spans. This can provide a series of lurching dislocations, really pulp up the sound to create a new
timbral entity.

SHUFFLE
re-order domain windows according to image pattern, with grpsize windows for each domain element;
the order of windows can therefore be made to go backwards as well as forwards, but the
implementation of the pattern always moves constantly forward. Disjunctions, retrogrades, tiny
repeating patterns etc. all become possible.

WEAVE
contraction is likely to create a new timbral entity, while expansion will augment the original with
repeating sub-patterns.

End of Technical Discussion

Last Updated 26 Apr 2023 for CDP8
Documentation: Archer Endrich, revised R.Fraser
© Copyright 1998-2023 Archer Endrich & CDP

