
Configuring OS X for command-line programs

These instructions are written for users of the CDP Multi-Channel Toolkit who have not
installed the full CDP system, and who have not used command-line programs before. CDP
users may also find it relevant, if they want to use the system from the command line.

Underneath the slick graphics, OS X is a species of Unix. Some tasks can only be performed
using a text console, and by typing in instructions. In OS X, this text console is called
"Terminal", which can be found in /Applications/Utilities. It is recommended that this be
made accessible from the Dock: simply drag "Terminal" to the Dock. OS X also provides a
text editor, called "TextEdit", which can be found in /Applications. Drag this to the dock in
the same way. Note that by default it creates new documents in RTF format; you will need to
change this to Plain Text format via TextEdit's Preferences page.

Toolkit users are faced with three basic tasks:
• configuring Terminal to find the various command-line programs in the Toolkit
• Navigating through directories containing soundfiles
• running Toolkit programs to process or play soundfiles

Other tasks might include:

• copying soundfiles
• moving soundfiles between directories
• deleting soundfiles
• renaming soundfiles

These tasks can all be performed from the command-line. In more advanced usage, wildcard
characters can be used to perform multiple changes with one command. For more complex
batch processing shell scripts (offering powerful programming facilities) can be used, taking
full advantage of the underlying unix-like nature of OS X.

Clicking on the Terminal icon in the Dock will launch Terminal, which will display a
window to receive text commands and print any text output from them.

The first thing to note is the title: this will indicate one of two forms of command "shell":

bash
tcsh

The difference between these is only of concern to advanced users experienced in using Unix
tools. However, the syntax for some commands is different, and the private initialization files
are different, so it is important to know which shell you are using. On all modern Mac
systems, Bash is the default shell.

Open a Terminal session: you will see a command prompt comprising the computer name and
your user name, for example:

bash shell:
cdpmac:~ fred$

tcsh shell:
[cdpmac:~] fred$

At this stage, you are "in" your home directory). The following instructions assume that you
stay in this directory.

A standard Unix shorthand for "my home directory" is the tilde character: ~ which as shown
above forms part of the initial shell prompt.

The CDP system, including the multi-Channel Toolkit, comprises a large number of programs
that are not full Applications that one can double-click on from the Finder, but rather are
command-line tools. Front-end applications such as Sound Loom run them behind the
scenes; but they are actually designed to be run directly from the command-line, i.e. from
within a Terminal session. To access them, Terminal needs to know where they are – what
their "path" is – i.e. what directory they are in. This in turn means that we may want to create
a directory in which to put such programs. The natural procedure of course is to use the
Finder to do this – e.g. to create a folder called "bin" in your home directory. It is equally
possible to do this directly from the Terminal.

All commands comprise a (usually) short command name followed by any further arguments
(separated by spaces), and completed by pressing the Enter key, which initiates the command.
In the examples below, all text typed by the user is shown in a monospaced font.

Some basic unix commands:

List directory:
ls

List Directory in a "long" format that displays the size and modification date of each file (or
directory), and the permissions setting for each:
ls -l

Make Directory "dirname":
mkdir dirname

Change into Directory "dirname":
cd dirname

Change to your home Directory:
cd ~

Read environment variables:
env

Note especially the PATH string reported by this command

To set up Terminal to run the Toolkit programs we must place them in a convenient directory,
and then add the full path name of that directory to the user's PATH as shown by the env
command.

A conventional name for a directory to contain executable programs (also termed "binary"
files in unix-speak) is simply bin. You will find that some system directories on the system
already have this name. These directories are not visible in the OS X finder (nor from any
GUI application), but are accessible from a Terminal session. For example: type the
command ls followed by a space and a forward slash:

ls /

This asks the shell to list all the directories from the root of the whole system: these
directories will include all the standard system directories familiar to any unix user. Similarly,
to see the contents of the directory called /usr type:

ls /usr

A typical output would be:

X11R6 include libexec sbin
standalone
bin lib local share

In principle, the Toolkit programs could be placed in any of the available system bin folders,
with
/usr/bin or /usr/local/bin the most likely locations. Writing to any of the system folders
requires the use of the administrator password (and shell commands must be prefixed with
the special command sudo). This is not recommended for users inexperienced in the
command-line environment.

Instead, we will see how to create a new bin folder inside the home directory, and how to
add its path to the list searched by the shell. Each shell checks a special hidden initialisation
file when it starts up - the name of this file is particular to each of the available shells. These
files are not present by default in a new OSX system – we will need to create them ourselves.

Open a new Terminal session, and note whether you are using the bash or tcsh shells;
currently bash seems to be the default. At the command prompt, type the following
command to create the new directory:

mkdir bin

It is easiest at this stage to use the finder to copy the unpacked Toolkit programs to the new
directory.

To create the bash initialisation file:

1. If you do not have a file called .bash_profile.

this is a file read by the Bash shell when a new terminal session is started. It is not visible in
Finder because the leading dot character marks it as a "hidden" file. So how do we find out?
 Make sure you are in your home directory, as described above (symbolised by the ~
character).
Then type the command:

ls -a

This prints a directory listing including the "dot" files - there may be several (the -a flag asks
ls to display all files). The following instructions assume that .bash_profile is not
present, so we have to create one.

Open the OS X application TextEdit to create a new text file. Write the following text exactly
as shown:

PATH=$PATH:~/bin

Use File->Save As to save the file with the name .bash_profile in your home directory.
In the Save As dialog, uncheck "If no extension is provided, use .txt". When you click Save, a
further dialog will appear with a warning about using the dot name - click "use .".

To confirm that the file has been correctly named and saved, go back to your Terminal
window and type the list command again:

ls -a

2. If you do have .bash_profile.

This will have been created by some other program or library that you installed. It may or
may not already have a PATH definition. You do not want to overwrite this file, or you will
lose important configuration setting for whatever software created the file. This now includes
the CDP system!

You can open a file from Terminal in the default text editor (e.g. TextEdit.app) simply by
typing:

open .bash_profile

Or, if you are comfortable with the emacs editor, open the file in that directly:

emacs .bash_profile

All we have to do is add our path to any existing one. In fact, exactly the same line can be
used as shown above:

PATH=$PATH:~/bin

as this appends our path to the existing one; or you can add the new path directly to the end of
the existing PATH string, remembering to use the separator character, here a colon. Note that
the system defines a default PATH early on in the boot process, inherited by each user. It is
always essential to use an "update" PATH command as shown above; otherwise we will lose
the paths to all the commands upon which Bash itself depends!

To create the tcsh initialisation file:

Create a new file in TextEdit, entering the text below, exactly:

setenv PATH ${PATH}:${HOME}/bin

Again, you will need to confirm that the file .tcshrc does not already exist - use the same
procedure as described above. Assuming it does not, save this file with the hidden name
.tcshrc. Otherwise, edit the file to add the new path at the end of any existing PATH
statement.

 The different text in the two files reflects the differences of language between the two shells.
However, the action is the same - to read the existing PATH string (as shown by the env
command), and append the new path.

NB: As their name suggests, these initialisation files are only read when a Terminal session
is launched, so to activate them you will need to close all Terminal Sessions (you can have
more than one running at the same time!).

It is also possible to run one shell from another, simply by typing the name of the required
shell. If you do this, you return to the previous shell by typing exit.

Using the command line to run Toolkit and programs.

To test the installation it will be useful first to change to a folder containing some soundfiles.
Assuming you have a folder "sounds" in your home directory, use the Change Directory
command "cd" to change to it:

cd sounds

The directory sounds is now your "current directory". all commands operate relative to the
current directory.

A trick with cd
You can obtain a directory or file path by dragging it from the Finder into the open Terminal
window - the path will then appear at the prompt line. The trick is to type cd and a space

first, then do the drag; the command is then ready to be invoked. This is especially useful for
paths to some deeply nested directory - saves typing and avoids those typing mistokes!

Now run some programs, firstly by themselves:

sfprops

This will list the properties of a soundfile. Used without a filename it will print a usage
message. Read this, and then run sfprops again, giving it the name of a soundfile:

sfprops testfile.aiff

Other programs take one or more command-line arguments, separated by spaces. To play the
soundfile testfile.aiff, use the Toolkit program paplay:

paplay testfile.aiff

If the file is mono, you could create a surround version panned around the listener using
abfpan or abfpan2. Type the name of the program by itself to obtain the usage
message. To rotate the file two times around the listener, type the following:

abfpan testfile.aiff testpan.aiff 0 2

To play such a multi-channel file using paplay, it will of course be necessary to have an
audio device that can render to the required number of channels.

Alternatively, you can try out the AMB file format using the -b flag, and giving the output
file the .amb extension:

abfpan -b testfile.aiff testpan.amb 0 2

Note that the new program abfpan2 only outputs a (second-order) AMB file, it does not
decode. Use the new program fmdcode for this (or paplay).

Some standard command-line operations.

To copy files from the current directory to a sub-directory called "aiffsamples", use the
command cp:

cp *.aiff aiffsamples

The 'wildcard' character * means "anything", so this says copy all files with names ending
with .aiff to the folder aiffsamples. If you have a set of piano samples will a common root
name (e.g. pianoA1.aiff, pianoA#1.aiff, pianoB1.aiff etc.) , you can use the wildcard
mechanism to copy just those files to a new subdirectory piano:

mkdir piano
cp piano*.aiff piano
cd piano
paplay pianoA1.aiff

You may be impressed how speedily these operations are performed, compared to the
manoeuvres required to do it from the finder!

The move command is similarly simple. This moves all files whose names start with "piano"
to the new directory:

mv piano*.aiff piano

The mv command is also used to rename files:

mv verylongfilename.aiff vname.aiff

Or in combination, to move the file to the new folder:

mv verylongfilename.aiff piano/vname.aiff

Note however that these commands will not work quite so conveniently with file or directory
names containing spaces. Such names have to be enclosed in quotation marks:

mkdir "Tenor Sax"
mv "sax A 1.aiff" "Tenor Sax"/saxA1.aiff

Such filenames are really somewhat inimical to fluent command-line work, simply because
spaces are universally interpreted as string separators. Users likely to make extensive use of
the command-line will find it expedient to rename such files to names replacing spaces with,
say, the underscore character. An adept unix programmer would create a shell script (a text
program run by the shell itself) to perform this task for a large number of files; at this stage it
will be safer to perform the task by hand in the Finder. Worst of all are names containing
multiple spaces; it is all but impossible to work with these from the command-line (at least,
without investigating each filename individually from the finder first!).

To delete a file (or files), use the rm command:

rm testfile.aiff

Wild-cards can be used:

rm piano*.aiff

But take care! The command:

rm *

will remove every file in the current directory, with no possibility of recovery, and with no
helpful warning message!

Finally, note that all such commands have online help available in the form of the "man"
command.
Typing:

man mv

will print a stream of text information to the console (press the spacebar to read the next page,
enter to move down a single line, and type q to return to the shell prompt).

To see just how comprehensive this documentation can be, try typing:

man bash

This will print the full documentation on the bash shell, including the syntax and keywords
used for advanced shell programming.

Needless to say, this document only scratches the surface of what is possible from the
command line. OS X users are encouraged to research further, perhaps by buying one of the
many books available on how to use a unix system (some are specific to OS X), how to write
shell scripts, and how to use other scripting languages such as perl or Python, both supplied
as standard with OS X.

Richard Dobson, July 2006, updated November 2010

