Configuring OS X for command-line programs

These instructions are written for users of the CDP Multi-Channel Toolkit who have not
installed the full CDP system, and who have not used command-line programs before. CDP
users may also find it relevant, if they want to use the system from the command line.

Underneath the slick graphics, OS X is a speciésnif. Some tasks can only be performed
using a text console, and by typing in instructiohs OS X, this text console is called
"Terminal", which can be found i pplications/Utilities. It is recommended that this be
made accessible from the Dock: simply drag "Terihittathe Dock. OS X also provides a
text editor, called "TextEdit", which can be foundApplications. Drag this to the dock in
the same way. Note that by default it creates nesuchents in RTF format; you will need to
change this to Plain Text format via TextEdit'sf@rences page.

Toolkit users are faced with three basic tasks:
» configuring Terminal to find the various commaimakl programs in the Toolkit
* Navigating through directories containing sourefil
* running Toolkit programs to process or play souesf

Other tasks might include:

* copying soundfiles

* moving soundfiles between directories
» deleting soundfiles

* renaming soundfiles

These tasks can all be performed from the commiaedih more advanced usage, wildcard
characters can be used to perform multiple chawgbsone command. For more complex
batch processing shell scripts (offering powerfalgpamming facilities) can be used, taking
full advantage of the underlying unix-like natufeQs X.

Clicking on the Terminal icon in the Dock will lacim Terminal, which will display a
window to receive text commands and print any texput from them.

The first thing to note is the title: this will irhte one of two forms afommand " shell" :

bash
tcsh

The difference between these is only of conceidianced users experienced in using Unix
tools. However, the syntax for some commandsfisrdnt, and the private initialization files
are different, so it is important to know which Blyeu are using. On all modern Mac
systems, Bash is the default shell.

Open a Terminal session: you will see a commanohpt@omprising the computer name and
your user name, for example:

bash shell:
cdprmac: ~ fred$

tcsh shell:
[cdprmac: ~] fred$

At this stage, you are "in" yoitnome directory). The following instructions assume that you
stay in this directory.

A standard Unix shorthand for "my home directosgy/the tilde charactet: which as shown
above forms part of the initial shell prompt.

The CDP system, including the multi-Channel Toglk@mprises a large number of programs
that arenot full Applications that one can double-click onrfrahe Finderbut rather are
command-line tools. Front-end applications such &und Loom run them behind the

scenes; but they are actually designed to be meatti from the command-line, i.e. from
within a Terminal session. To access them, Terimeads to know where they are — what
their "path” is — i.e. what directory they are in. This inrtuneans that we may want to create
a directory in which to put such programs. Theuratprocedure of course is to use the
Finder to do this — e.g. to create a folder call@d" in your home directory. It is equally
possible to do this directly from the Terminal.

All commands comprise a (usually) short commandenéotiowed by any further arguments
(separated by spaces), and completed by pressrigntier key, which initiates the command.
In the examples below, all text typed by the useshiown in a monospaced font.

Some basic unix commands:

List directory:
l's

List Directory in a "long" format that displays teze and modification date of each file (or
directory), and the permissions setting for each:
l's -1

Make Directory "dirname":
nkdi r di rnanme

Change into Directory "dirname™:
cd dirnane

Change to your home Directory:
cd ~

Read environment variables:
env

Note especially th®ATH string reported by this command

To set up Terminal to run the Toolkit programs westrplace them in a convenient directory,
and then add the full path name of that directorthe user's PATH as shown by #rev
command.

A conventional name for a directory to contain exable programs (also termed "binary"
files in unix-speak) is simplgi n. You will find that some system directories on flystem
already have this name. These directories areisierin the OS X finder (nor from any
GUI application), but are accessible from a Terisession. For example: type the
command s followed by a space and a forward slash:

ls /

This asks the shell to list all the directoriesfrthe root of the whole system: these
directories will include all the standard systemediories familiar to any unix user. Similarly,
to see the contents of the directory callesr type:

I's /usr

A typical output would be:

X11R6 i ncl ude | i bexec shin
st andal one
bi n lib | ocal shar e

In principle, the Toolkit programs could be pladgedny of the available system bin folders,
with

[usr/ bi n or/usr/local/bin the most likely locations. Writing to any of thgstem folders
requires the use of the administrator password gaetl commands must be prefixed with
the special commargludo). This is not recommended for users inexperiemcéie
command-line environment.

Instead, we will see how to create a ri@w folder inside the home directory, and how to
add its path to the list searched by the shellhEsaell checks a special hidden initialisation
file when it starts up - the name of this file &rfcular to each of the available shells. These
files are not present by default in a new OSX systewve will need to create them ourselves.

Open a new Terminal session, and note whether gousing thdash ort csh shells;
currentlybash seems to be the default. At the command prompeg tiye following
command to create the new directory:

nkdir bin

It is easiest at this stage to use the finder fiy tbe unpacked Toolkit programs to the new
directory.

To createthe bash initialisation file:
1. If you do not have a file calledbash_profil e.

this is a file read by the Bash shell when a nemiteal session is started. It is not visible in
Finder because the leading dot character marlssat"aidden” file. So how do we find out?
Make sure you are in your home directory, as desdrabove (symbolised by the ~
character).

Then type the command:

ls -a
This prints a directory listing including the "ddifes - there may be several (the -a flag asks
| s to displayall files). The following instructions assume thétash_pr ofi | e is not

present, so we have to create one.

Open the OS X application TextEdit to create a text/file. Write the following text exactly
as shown:

PATH=$PATH: ~/ bi n

Use File->Save As to save the file with the narhash_pr of i | e in your home directory.
In the Save As dialog, uncheck "If no extensioprisvided, use .txt". When you click Save, a
further dialog will appear with a warning aboutngsthe dot name - click "use .".

To confirm that the file has been correctly named saved, go back to your Terminal
window and type the list command again:

s -a

2. If you do have bash_profile.

This will have been created by some other prograhbi@ry that you installed. It may or
may not already have a PATH definition. You do want to overwrite this file, or you will
lose important configuration setting for whateveftware created the file. This now includes
the CDP system!

You can open a file from Terminal in the defaulttteditor (e.g. TextEdit.app) simply by
typing:

open .bash_profile
Or, if you are comfortable with themacs editor, open the file in that directly:

emacs . bash_profile

All we have to do is add our path to any existing.dn fact, exactly the same line can be
used as shown above:

PATH=$PATH: ~/ bi n

as this appends our path to the existing one; orcgm add the new path directly to the end of
the existing PATH string, remembering to use thgasator character, here a colon. Note that
the system defines a default PATH early on in thet [process, inherited by each user. It is
always essential to use an "update” PATH commarsti@sn above; otherwise we will lose
the paths to all the commands upon which BasH ideglends!

To createthetcsh initialisation file:

Create a new file in TextEdit, entering the texblae exactly:
set env PATH ${ PATH}: ${ HOVE}/ bi n

Again, you will need to confirm that the filg cshr ¢ does not already exist - use the same
procedure as described above. Assuming it doesaeg, this file with the hidden name

. t cshr c. Otherwise, edit the file to add the new patthatdénd of any existing PATH
statement.

The different text in the two files reflects théerences of language between the two shells.
However, the action is the same - to read theiagiftATH string (as shown by tkev
command), and append the new path.

NB: As their name suggests, these initialisatiorsfdee only read when a Terminal session
is launched, sto activate them you will need to close all Terminal Sessions (yan bave
more than one running at the same time!).

It is also possible to run one shell from anotkanply by typing the name of the required
shell. If you do this, you return to the previobel$ by typingexi t .

Using the command lineto run Toolkit and programs.

To test the installation it will be useful first tthhange to a folder containing some soundfiles.
Assuming you have a foldesdunds' in your home directory, use ti@&hange Directory
command &d" to change to it:

cd sounds

The directory sounds is now your "current directoal commands operate relative to the
current directory.

A trick with cd
You can obtain a directory or file path by draggiinigom the Finder into the open Terminal
window - the path will then appear at the prompeliThe trick is to typed and a space

first, then do the drag; the command is then readye invoked. This is especially useful for
paths to some deeply nested directory - savesgypid avoids those typing mistokes!

Now run some programs, firstly by themselves:

sf props

This will list the properties of a soundfile. Useithout a filename it will print a usage
message. Read this, and then run sfprops againggtwthe name of a soundfile:

sfprops testfile.aiff

Other programs take one or more command-line argtsnseparated by spaces. To play the
soundfiletestfile.aiff, use the Toolkit progranpapl ay:

papl ay testfile.aiff

If the file is mono, you could create a surroungrsion panned around the listener using
abf pan or abf pan2. Type the name of the program by itself to obthanusage
message. To rotate the file two times around 8tener, type the following:

abfpan testfile.aiff testpan.aiff 0 2

To play such a multi-channel file usipgpl ay, it will of course be necessary to have an
audio device that can render to the required nurobenannels.

Alternatively, you can try out the AMB file formasing the- b flag, and giving the output
file the.amb extension:

abfpan -b testfile.aiff testpan.anb 0 2

Note that the new prograatfpan2 only outputs a (second-order) AMB file, it doext n
decode. Use the new progrémdcode for this (orpaplay).

Some standard command-line oper ations.

To copy files from the current directory to a sukedtory called "aiffsamples”, use the
commandcp:

cp *.aiff aiffsanples

The Wwildcard' charactelr means "anything”, so this says c@byfiles with names ending
with .aiff to the foldemiffsamples. If you have a set of piano samples will a commant
name (e.gpianoAl.aiff, pianoA#1l.aiff, pianoBl.aiff etc.), you can use the wildcard
mechanism to copy just those files to a new subttirgpi ano:

nkdi r pi ano

cp piano*.aiff piano
cd pi ano

papl ay pi anoAl. ai ff

You may be impressed how speedily these operatimperformed, compared to the
manoeuvres required to do it from the finder!

The move command is similarly simple. This movésilals whose names start with "piano”
to the new directory:

mv pi ano*. aiff piano

Themv command is also used to rename files:

mv verylongfilenane.aiff vnane.aiff

Or in combination, to move the file to the new faid

mv verylongfilenane.aiff piano/vnane. aiff

Note however that these commands will not workegad conveniently with file or directory
names containing spaces. Such names have to lwsetch quotation marks:

nkdir "Tenor Sax"
mv "sax A l.aiff" "Tenor Sax"/saxAl.aiff

Such filenames are really somewhat inimical torfttommand-line work, simply because
spaces are universally interpreted as string stpardJsers likely to make extensive use of
the command-line will find it expedient to renash files to names replacing spaces with,
say, the underscore character. An adept unix pnogeer would create a shell script (a text
program run by the shell itself) to perform thask for a large number of files; at this stage it
will be safer to perform the task by hand in thedér. Worst of all are names containing
multiple spaces; it is all but impossible to worikhwthese from the command-line (at least,
without investigating each filename individuallpifn the finder first!).

To delete a file (or files), use thencommand:
rmtestfile.aiff

Wild-cards can be used:

rm pi ano*. ai ff

But take care! The command:

rm*

will removeevery file in the current directory, with no possibility @aovery, and with no
helpful warning message!

Finally, note that all such commands haméine help available in the form of the "man”
command.

Typing:

man nv

will print a stream of text information to the cates (press the spacebar to read the next page,
enter to move down a single line, and type q torreto the shell prompt).

To see just how comprehensive this documentatiarbeatry typing:

man bash

This will print the full documentation on the basell, including the syntax and keywords
used for advanced shell programming.

Needless to say, this document only scratchesutti@ce of what is possible from the
command line. OS X users are encouraged to restatbler, perhaps by buying one of the
many books available on how to use a unix systemé¢sare specific to OS X), how to write
shell scripts, and how to use other scripting laggs such as perl or Python, both supplied
as standard with OS X.

Richard Dobson, July 2006, updated November 2010

