
Composers Desktop Project�

Tabula Vigilans� Information Page�

Description�
Tabula Vigilans� (i.e., 'Vigilant Table') is an advanced algorithmic composition�
language written by�Richard Orton� mostly between 1993 and 1998, with assist-�
ance regarding YACC from Martin Atkins. There have been some important addi-�
tions since then coded by John Fitch. As a�score generator�, it can define and�
replay a huge range of possibilities, from completely conventional melodic and�
harmonic music to envelope-shaped multi-event textures with random features.�

It is script-based, meaning that the user writes a text file which is C-like in na-�
ture. The purpose is (usually) the real-time generation of music.�

·� It supports #include and procedures, making it possible to structure large�
projects sensibly.�

·� It will write multiple output files and can produce formated data files, such�
as breakpoint files or�Csound� score files, thus providing a way to shape�
data needed by other programs – and a route to the algorithmic handling�
of sound files.�

·� Many fairly low level – and therefore flexible – system, musical and math-�
ematical rules can be called within the script, providing enormously pow-�
erful programming tools for musical (and other) programming needs.�
Some seventy or so music-oriented primitive rules can be combined to�
create rule-networks, supporting recursive as well as normal control-flow�
features. Constraint rules permit some advanced compositional capabili-�
ties, and even fuzzy logic and other artificial intelligence techniques are�
supported.�

·� It supports MIDI In and MIDI Out, defining MIDI voices and channels,�
scheduling of events, etc. and can act as a real-time MIDI performing in-�
strument.�

·� It handles nested indexing with ease, a crucial requirement for complex�
musical relationships.�

·� It comes with a large number of example scripts designed to take the user�
from the simple to the more complex, and to illustrate strategies to�
achieve various musical objectives.�

·� There is a full manual in HTML with a frame-based indexing system for�
quick access to any part of the manual.�

Sample (elementary) script with comments�
// - 'chords3.tv'�
//A Tabula Vigilans tutorial script�

//Effect: Chords are built from a series of intervals�
//taken from a file; these are then performed either�
//as chords or as up-or-downward arpeggios in short�
//sequences. The set of intervals selected can be�
//varied by using an additional commandline argument�
//(from 0 to 14).�

table CHORD[4] //define an array to hold 4 chords�
table INTVL[3] //define an array to hold 3 intervals�

start()�
{�
 midiset 0, 0 // Piano�
 INTVL fill_table "intvls", arg(1) // 'intvls' is a text data file�
 CHORD[0] = 48 // start position is low C�

 for(i = 0; i < 3; i+=1) { // FOR loop to build up 1st chord�
 CHORD[i+1] = CHORD[i] + INTVL[i] // from the intervals in 'intvl'�
 }�
 while(1) {�
 xx = try(midichord 0, CHORD[0], 64, 0.2, 4, arp) //midichord is a�
 if(xx > 0) { // T.V. function involving MIDI Out�
 if(CHORD[0] > 76) { // getting too high, so -=�
 up = 0�
 }�
 if(CHORD[0] < 30) { // getting too low, so +=�
 up = 1�
 }�
 if(rand() > 0.94) { // rand() is a T.V. function�
 wait 0.6 // randomly placed pauses�
 }�

 arp = round(rand()) // randomly activated 'arp'(eggios)�
 swp = INTVL[0] // hard-coded swap routine�
 INTVL[0] = INTVL[1]�
 INTVL[1] = INTVL[2]�
 INTVL[2] = swp�
 if(up) { // if flag 'up' is 1, go up (+=)�
 CHORD[0] += INTVL[0]�
 }�
 else { // if flag 'up' is 0, go down (-=)�
 CHORD[0] -= INTVL[0]�
 }�

 for(i = 0; i < 3; i+=1) { // builds up more chords�
 CHORD[i+1] = CHORD[i] + INTVL[i]�
 }�
 }�
 }�
}�

Algorithmic Composition &�Tabula Vigilans�
Algorithmic composition can relate either to tone generation, or to score genera-�
tion. (�Tabula Vigilans� deals exclusively with the latter.) In both instances, a�
complex of instructions is built up in a script and executed together, creating�
sounds and/or musical events. These can range from defined melodic sequences�
to arbitrarily complex musical textures. With algorithmic programming, a useful�

(and changing) balance point between the definite and the random can be�
achieved.�

Tabula Vigilans� is conceived like a musical spreadsheet in that it 'recalculates'�
the page at machine speed. This means that any variable or combination of vari-�
ables can be updated at any time. Thus the script is completely dynamic, and�
any form of time-varying change can be woven into the music as it unfolds in�
real-time.�Tabula Vigilans� is therefore aptly described as a�real-time per-�
formance instrument�.�

This makes it particularly useful for handling the information that controls�
'expressiveness' in music. In MIDI, this means MIDI controllers, alterations in�
velocity (loudness) etc.�

More advanced applications could define higher level musical formal elements,�
texture types, generic motivic shapes, stylistic and expressive features. For�
those with some programming experience, it opens up an endless vista of possi-�
ble projects – all with immediate musical feedback.�Tabula Vigilans� provides a�
way to move beyond tone generation to score generation and the higher level�
concepts of musical organisation.�

Tabula Vigilans� can be proving ground for engineering as well as musical ideas.�
It can be particularly useful for exploring and developing pre-compositional ma-�
terial.�

Yet another application is to create�Csound� score files incorporating algorithmic�
processes. This score file is then used by�Csound� (together with an independ-�
ently created orchestra file) to produce�audio� output.�

Overall,�Tabula Vigilans� – as with other software with algorithmic features –�
offers a way forward into a truly 21�st� century approach to musical exploration.�

 Last updated: 9 June 2006�

© 2006 Composers' Desktop Project, Chippenham, Wiltshire England�
~ Composer Tools for Sound Design ~�

