
 

 

The Operation of the Phase Vocoder 
A non-mathematical introduction to the Fast Fourier 

Transform  

by Richard Dobson  

This document has been written for CDP at my request in order to 
further a deeper technical understanding of how the Phase Vocoder 
works. In doing so, Richard has in fact also given a general 
introduction to a number of important features of digital filtering. 
Watch for these key ideas: that the Phase Vocoder works by comparing 
the incoming signal with its own in-built signal; that this comparison is 
equivalent to a filtering operation (focusing in on a given harmonic / 
frequency); that the filtering process is why discussion of 'sidebands', 
'aliasing', 'band-limited signals', 'Nyquist' etc. is relevant. All this may 
help us to anticipate a little better what may happen when we time 
stretch etc. and perform spectral manipulations on various types of 
sound. Lastly, Richard shows how to use SPECT and DISP to analyze 
the behaviour of a certain types of program (such as FSTATVAR), 
using a 1 sample soundfile made as a control reference. (AE)  

Introduction 
Frequency domain analysis and processing tools are arguably the most important 
resources available to the electronic music composer wherever the timbre of a sound 
is the prime concern. The most common frequency domain tool is the filter, familiar 
to users of both analog and digital synthesis systems. However, whereas an analog 
system allows filtering to be performed empirically and interactively, by moving a 
slider or turning a knob, with the effects immediately apparent to the ear, a general-
purpose digital system such as the CDP Computer Music System is not designed with 
real time operation as a primary consideration. In the frequency domain especially, 
which is computationally demanding in a digital system, it does not allow immediate 
feedback, although the use of the DSP on the Atari Falcon will make this possible 
with certain selected operations. Filtering operations can take some time, and the 
composer needs to have a very precise idea of what the filter has to do, so that 
valuable time is not wasted by the use of either an inappropriate program or of 
unsuitable parameters passed to it. This document is intended to help develop the 
ability to assess what needs to be done.  



The key to success in this task is a reliable tool for analysing the spectral character of 
a soundfile, which complements the sophisticated discrimination of the human ear 
with precise numerical analysis. The Fast Fourier Transform (FFT) is such a tool. 
However, the mathematical basis of its operation is all but incomprehensible to non-
specialists, while its output can be misleading and confusing unless its principles are 
well understood. The following paragraphs present the FFT as non-mathematically as 
possible, yet attempt to explain it in sufficient detail for its role in the Groucho 
program SPECT and in the PHASE VOCODER and its associated programs, to be 
understood and used effectively.  

1. Frequency detection 
The FFT takes as its basis a principle formulated by Jean Baptiste Joseph Fourier 
(1768-1830). This principle is that all complex periodic waveforms (that is to say, 
waveforms with a clear pitch) can be modelled by a set of harmonically related 
sinewaves added together. Waves are said to be harmonically related when they are 
integer multiples of the fundamental. This is the basis of classical additive synthesis. 
Each sinewave corresponds to a harmonic of the fundamental frequency of the sound. 
The harmonic structure of a common analog waveform such as the sawtooth or square 
wave can be determined mathematically, and (under ideal conditions) can be precisely 
measured by an analysis tool such as the FFT :  

 

Fig 1A: downward sawtooth -> FFT -> spectrum  



 

Fig 1B: square wave -> FFT -> spectrum  

So, how does the FFT detect all these harmonics? It seems especially clever in the 
case of a square wave, which appears as far removed from the smooth shape of a 
sinewave as it is possible to be. It is really a case of pattern matching. The FFT is 
itself a periodic, harmonic-rich entity, and it detects which of its own many virtual 
sinewaves are also present, strongly or weakly, in the input signal by comparing its 
own virtual signal with the input signal. It does this form of 'pattern matching' by a 
process of multiplication.  

When you multiply a signal by another, you are performing a 'ring modulation'. In the 
simplest case, the input to the ring modulator consists of two sinewaves, in which case 
you get two sinewaves at the output. One has a frequency equal to the numerical sum 
of the frequencies of the inputs, and the other is the difference between them. For 
example, if you multiply a sinewave at 440Hz by a sinewave at 441Hz, you get a 
signal consisting of a sinewave at 881Hz and a sinewave at 1Hz. Make the two inputs 
equal and you get an output, seemingly, of just one sinewave, at 880Hz:  

 

Fig 2: sine * sine -> sine  



However, as the figure shows, this is not 'just' a sinewave, as it lies all above the zero 
line - there is a positive DC offset. This offset is directly proportional to the 
amplitudes of the input signals. Therefore if one of these is at a fixed 'reference' level, 
the output can provide a direct measure of the amplitude of the other. We can derive a 
value for this simply by averaging the waveform (actually a low-pass filtering 
process) - adding up the instantaneous amplitudes of each point of the waveform and 
dividing the result by the number of points. Putting it another way, the areas under the 
positive half of the waveform are added to the areas under the negative part. An 
ordinary sinewave would yield an average of zero, as the two halves cancel exactly, 
but the waveform in the figure above would yield a net positive value.  

This process can clearly be extended in principle to arbitrary input signals by 
sweeping the frequency of the reference sinewave continuously though the audible 
range and recording the fluctuating amplitude of the output - any non-zero value 
signifies the presence in the input of a harmonic at that frequency and amplitude. 
Unfortunately, such an ideally perfect variable ring modulator is extremely difficult to 
design - apart from any other considerations it would probably be impossibly 
expensive.  

Instead, we will have to make do with a digitally sampled version in the FFT. Instead 
of sweeping continuously through the audible range, it simply samples the input 
waveform at multiples of its own fundamental frequency. If this is low enough, the 
output will still give a good image of the spectrum of the input.  

(Actually, in its mathematical guise, the Fast Fourier Transform is a streamlined 
version of the full Fourier Transform, which is continuous over the frequency range, 
and which, as a mathematical tool, enables the spectrum of a periodic geometric 
waveform to be determined by hand calculation. The digital version of this continuous 
sweep, such as might be applied to some arbitrary waveform, is the Discrete Fourier 
Transform. Unfortunately, this is agonisingly slow for the low fundamental 
frequencies we need, which is why the Fast Fourier Transform was developed. What 
the FFT can do in seconds, the DFT may take hours or even days to calculate!)  

2. The FFT as a filter bank 
The frequency-sampling nature of the FFT means that it behaves just as would a bank 
of carefully tuned analog filters - which is what the analog spectrum analyser 
comprises. The more precise the measurements are to be, the narrower the pass-band 
of each filter must be, and the greater the number of filters required. Suppose that 
each filter had a bandwidth of 20Hz. It would require 1000 filters to cover the whole 
audio range (20 to 20,000Hz). However, this is surely overkill. Certainly, at 440Hz a 
bandwidth of 20Hz seems reasonable - a little less than a semitone. But at 4KHz it 
represents around one tenth of a semitone, unnecessary precision for most purposes.  

It is hardly surprising, then, that commercial audio spectrum analysers space their 
filter bands not in linear (evenly spaced) frequency increments but in logarithmic 
(expanding) interval increments, one third of an octave being standard in professional 
studio equipment. (Note that the octave series relates to pitch in a logarithmic manner: 
more and more frequencies are contained within each (higher) octave; e.g., 220 -> 440 



-> 880 -> 1760 -> 3520 etc.; thus 'one third of an octave' will span more frequencies 
as one goes higher.).  

Unfortunately, the FFT is not economical in this way. It distributes its filters linearly 
across the audio range, which means that at high frequencies it is if anything too 
precise, but at low frequencies not precise enough to identify the pitch of a note 
within a semitone. This is really an unjust criticism of the FFT, since the periodic 
signals for which it was originally designed would not have partials that close 
together; it is only mentioned here because, inevitably, the FFT will be used on 
complex polyphonic sounds in which partials may well be as close or closer. Hence 
the uncertainty about what it may find between the expected harmonic partials. Used 
in this way, the FFT outputs what is best thought of as a statistical or general measure 
of the dominant pitch regions of a sound - its spectral envelope.  

(A recently developed analysis and resynthesis tool, the wavelet transform, has much 
in common with the FFT, except that its analysis filters are spaced logarithmically. 
Graphical pictures of wavelet analyses correspond much more closely to the 
perception of the ear than does the FFT. Interested readers are directed to the article in 
Computer Music Journal Vol 12.4, and to the book Representations of Musical 
Signals, ed. Poli, Piccialli and Roads, recently published by the MIT Press.)  

3. Frequency resolution 
Although the FFT as a whole is a complex mathematical process, in terms of the filter 
bank model it is still rather crude. Each filter is rather simple, and does not, in fact, 
exclude all but a narrow band of frequencies. Each filter generates a set of sideband 
responses above and below the nominal centre frequency. Furthermore, the filters 
overlap each other. Consequently, a frequency in the input that does not sit exactly on 
the centre frequency of a filter will register on the outputs of several other filters on 
either side, a phenomenon known as 'spectral leakage'. In the figures below, the first 
shows the FFT analysis of a sinewave corresponding exactly to the centre frequency 
of one of the FFT filters; for the second figure the frequency of the signal has been 
moved to a point half-way between two filters. The effect on the FFT output is 
striking, to say the least.  

 

Fig 3 Fig 4  

It is even worse if the vertical scale is recast in dB to show the relative power level of 
each filter response, rather than amplitude:  



 

Fig 5  

One could be forgiven for thinking that something was very wrong here. We might 
have expected two filters to register, not the mass response shown above. However, 
once the periodic nature of the FFT is understood, the result above will make much 
more sense.  

(There is another consequence of spectral leakage - the maximum amplitude given by 
the FFT has reduced, as energy in the input signal has also leaked into adjacent filters. 
It is not very much - around 3dB on average, but it shows that, sometimes, the 
amplitude values of spectral peaks in the FFT may have to be taken with a small pinch 
of salt - some signals may be significantly stronger than the FFT suggests. Note also, 
when using SPECT, that if you want the FFT output to reflect the absolute (actual) 
signal level with respect to frequency, you need to use the -u flag, otherwise for 
display purposes the output will be normalised (i.e., 'scaled' to the maximum 
amplitude range) by setting the highest spectral peak to maximum amplitude and 
adjusting the other values accordingly.)  

4. The FFT Window 
At this point we need to look a little more closely at the practical implementation of 
the FFT. Intuitively we can see that while we can quite reasonably speak of the 
instantaneous amplitude of a signal (simply a single sample value), we cannot so 
easily speak of instantaneous frequency. Experiments in psycho-acoustics have 
established that the ear cannot recognise the pitch of a sound until it is at least some 
20msecs long (0.023 sec). Imagine an amplifier with a faulty connection - somewhere 
the signal is continuous but we only hear intermittent blips. Unless these blips are 
20msecs or more, we cannot hear a pitch, only a click. If we wanted to identify what 
instrument was playing, we would need much longer blips - even half a second might 
not be enough.  

These blips are, in effect, short windows onto the sound. The input to the FFT is such 
a window - a short block of samples. At a sample rate of 22050 per second, a block of 
256 samples represents just over 23msecs, and is arguably the shortest useful window 
length for the FFT (note also its fundamental frequency: 22050/256 = 86.1Hz, which 
is rather high -- about F immediately below the bass clef). In the figures below, a 
short signal is shown with an FFT window superimposed on it; the second figure 
shows the window portion separately, as the FFT sees it.  

Note that this 'window' is a rectangular shape, cutting through the wave wherever the 
edge of the window falls, irrespective of whether the value at the edge is non-zero. 



This means that abrupt changes of amplitude may and probably will take place at 
these edges, as one window follows another -- and these abrupt changes can cause 
clicks in the sound.  

 

Fig 6 (upper) and Fig 7 (lower)  

We can see that the signal is a sinewave, and might intuitively expect the FFT 
analysis to show one spectral line. However, the FFT assumes that its window is 
equivalent to exactly one cycle of a periodic waveform, so it thinks the waveform 
really looks like Fig 8 (the waveform's periods are formed by a series of its analysis 
windows). Note the irregularities in what should be a smooth sinewave and how the 
pattern repeats -- these show the edges of the analysis windows:  

 

Fig 8  

Clearly this would not sound anything like a sinewave! The output of the FFT now 
seems much more understandable, if annoying.  

Looking at the contents of the window, we can see clearly that the problem is caused 
by the discontinuity between the ends of the windowed signal. The FFT is, so to 
speak, out of tune with the input signal. In fact, the chances of the FFT window ever 
being exactly in tune with the input signal are fairly remote - we can safely assume 
that such discontinuities will be the rule, not the exception.  

It seems reasonable to suppose that if we could somehow squash the ends of the 
window to reduce the discontinuity, the FFT might not be upset so much. This is 
indeed what is done. The window function most commonly used is the Hamming 
Window, which is illustrated below, together with the FFT analysis of the signal used 



previously, multiplied beforehand by the Hamming Window. (The illustration of the 
Hamming window is an approximation.)  

 

 

Fig 9: plain wave Fig 10: Hamming windowed wave Fig 11: FFT  

Although it is not perfect, it is clearly a great improvement on before, which used a 
rectangular window. Note that the program SPECT offers the option to use a 
rectangular window instead of the Hamming Window, and the companion display 
program DISP can plot the FFT either as a spectral envelope or as discrete spectral 
lines, so this combination is ideal for experimentation. The Phase Vocoder does not 
include a rectangular window option.  

One side effect of the use of the Hamming or similar window is that partials which are 
exact harmonics of the FFT fundamental frequency will now no longer show up as 
single spectral lines (the input has, in effect, been amplitude modulated: the amplitude 
is made to rise from and fall to zero at the edges of the window); it is, however, a 
price well worth paying, especially given the rarity of exact harmonics in 'real' 
signals.  

5. Window Length - or, how to hit a moving target 
From the above it would seem that a long window of, say, 1024 samples, has to be 
better than one of 256 samples, as the frequency resolution is so much better. This is 
indeed true, but it is also important to remember that at the low sample rate (22050), 
1024 samples represents some 46msecs (ie just under a 20th of a second: 1024 



samples \ 22050 sr = 0.046 sec), during which quite a lot can happen, especially if you 
are analysing something such as the attack of a trumpet, or of a percussive sound.  

A long window has better frequency resolution but worse time resolution. In the Phase 
Vocoder this dilemma is resolved to a great extent by overlapping the windows. For 
example, using a window of 1024 samples, successive FFTs will be applied to 
windowed portions starting at sample 1, 64, 128, 192, 256, and so on, moving through 
the sound in steps of 64 samples, whilst creating frames of 1024 samples. In this case 
the analysis sampling rate has octupled, from 21.53Hz to 172.26Hz, or from 46msec 
steps down to around 5msecs. Only for zero overlap is the analysis sampling rate 
equal to the fundamental frequency of analysis. However, this is not satisfactory in 
the case of the Phase Vocoder, because of the use of the Hamming window, which 
requires that there be an overlap of at least two for the original waveform to be 
reconstructed exactly.  

6. Window length -- or, tuning in 
From the above it is clear that frequency resolution is one of the most important 
parameters of the FFT. With the Phase Vocoder, this can indeed be specified directly, 
up to a point, by setting the F flag to some value. The Phase Vocoder warns that you 
cannot set both F and N (the length of the analysis window in samples), showing that 
these flags are intimately related alternative ways of controlling one parameter.  

Specifying window length (N) In both SPECT and the Phase Vocoder it is 
recommended that the window length for the analysis be a power of two - for 
example, 256, 512 or 1024 samples. This is because the FFT algorithm is particularly 
efficient with such values - when you are doing probably hundreds or thousands of 
FFT's in the Phase Vocoder you would need a very good reason indeed not to use the 
fastest type of FFT algorithm possible.  

However, the FFT can work with other window lengths, and will still be fairly 
efficient so long as the length is very 'composite' - has a large number of factors. Thus 
a length of, say, 384 (= 2*4*6*8) would also work very well. In the worst case, a 
number with few or no factors would reduce the FFT to the DFT, which as explained 
above is very, very, slow. It would be sensible to go on a world cruise, or a three-year 
Buddhist retreat, if you apply the DFT to a long soundfile.  

Specifying Frequency (F) The reason that the F option is available at all is that you 
may well want to 'tune' the FFT as closely as possible to a known fundamental 
frequency in your soundfile. Instead of defining the window length, you can define 
the desired fundamental frequency, and the nearest available window length will be 
selected for you. The one constraint is that the window length be even.  

Thus, if you ask the Phase Vocoder to tune itself to 50Hz, it could do so exactly if the 
window length was able to be 441 samples long (22050 sr \ 50Hz = 441 samples); this 
is in fact rounded up internally to 442 samples - not, as it happens, an ideal length for 
a window, as explained above. You will almost certainly find it more sensible to 
calculate what the ideal window length should be, and then give the FFT the nearest 
efficient length.  



For example, if you want to tune to 440Hz (at the low sample rate) the nearest integer 
window length will be 50 (rounded down from 50.1 -- 22050 sr \ 440Hz = 50.1 
samples). A much better window length would be 54, and, of course, a length of 64 
would be the most efficient of all. An alternative course of action, if you really want 
the greatest accuracy possible, is to tune the soundfile to the FFT (ie to transpose it 
using FTRANS). Anyone who seriously wants to do this can probably work out the 
transposition ratios for themselves!  

7. Waveform phase and channel counts 
There is one feature of the FFT that has proved a potential source of confusion. The 
number of 'channels' output by the FFT is usually stated as being half the number of 
samples in the window. For example, a window of 1024 samples results in an FFT 
output of 512 channels. There is in fact a very simple explanation for this, which 
relates directly to the question of the highest frequency which can be accommodated 
by a given sample rate. It requires a minimum of two samples to represent a single 
cycle of a sinewave - one positive and one negative. Thus, the maximum frequency 
which can be represented in a digital soundfile is exactly half the sample rate (the 
Nyquist limit). The FFT behaves in the same way - it takes N samples and outputs 
N/2 channels.  

Behind this explanation lies a very important mathematical assumption - that the input 
signal is 'real'. The terms 'real' and 'imaginary' crop up frequently in digital signal 
processing, and belong to the mysterious world of 'complex' numbers (see, for 
example, the documentation for SPECT).  

In a much simplified way of understanding the relationship between 'real' and 
'imaginary', a sinewave is considered as an 'imaginary' signal and a cosine wave as 
'real'. A complex number comprises both a real and an imaginary part. If you imagine 
a graph with the sine function on the Y-axis (up-down) and the cosine function on the 
X-axis (right-left), then a complex number equates to the co-ordinates of a point on 
that graph. Alternatively, this point can be specified in terms of an amplitude (radial 
distance from the origin) and an angle, measured from the X axis. This 'polar' 
representation is widely used in signal processing, and is central to the operation of 
the FFT.  

All that is really going on here is a need to recognise the phase of the input signal. A 
sinewave is simply a cosine wave shifted to the right a quarter of a cycle. Without the 
use of both sine and cosine waves in the FFT we would not be able to tell what are the 
relative phases of all the components of the input. Some may be pure sinewave, others 
pure cosine wave, but the majority (perhaps all) will be somewhere in-between; that 
is, the frequency components start at different places in the cycle.  

For simple analysis purposes this does not matter very much, but it does matter as 
soon as we want to recreate the waveform from the channel data, as is done in the 
Phase Vocoder. Here we are not only recreating the data in one window, we are 
recreating several overlapping windows. Clearly the phase must be continuous from 
one window to the next, otherwise there will be gross discontinuities in the output.  



Phase information is generally not of great relevance to the musician, and you may 
never need to trouble yourself with it, but it exists as an inevitable consequence of the 
FFT process. To put this another way, there is no information lost by the FFT, so that 
applying the 'inverse FFT' to the unmodified spectral data will recreate the original 
waveform exactly. Needless to say, this is a musically pointless exercise - the great 
strength of the Phase Vocoder and its associated programs is that it allows the 
composer to manipulate the spectral content of a complex input signal in arbitrary 
ways. The fact that it may be difficult to interpret a single FFT output of a spectrally 
complex input does not mean that the information has somehow got lost or damaged 
in some way - it simply means that it is difficult to interpret!  

In the Phase Vocoder an additional channel centred on 0Hz is generated. This serves 
to register signals below the fundamental frequency of the FFT more precisely than 
the 'raw' FFT can manage. In the latter, any wavecycle too long for the FFT window 
will register as a signal at the fundamental frequency (ie not at DC), together with a 
considerable number of sideband responses. The extra channel seems to help in the 
alignment of near-DC phase between FFTs and thus improve low frequency 
resolution and continuity. If you study 'pvoc.s', the file created by the Phase Vocoder 
using the -V flag, you will see that this first channel has a low boundary of negative 
frequency, for example -43Hz to +43Hz. A negative frequency corresponds to an 
inversion of phase. Thus the first channel tracks the phase of any sub-fundamental 
signal across the overlapping FFTs.  

As mentioned above, the FFT is directly invertible - the original waveform can be 
reconstructed exactly. This is still true to a great extent even where there is such a 
sub-fundamental component in the input. The problems really show up when the re-
synthesis is combined with something like time-stretching (one of the primary 
applications of the Phase Vocoder) - the result will be lumpy, probably full of 
glitches, and the pitch content of the output will not bear much relation to the input.  

8. Spectrum aliasing -- the importance of 'band-
limited' signals 
Any mention of the Nyquist limit reminds us of the importance of ensuring that all 
signals which are to be sampled or processed digitally need to be 'band-limited': that 
is, there must be no signal components higher than half the sample rate. Being 
markedly permissive, the CDP System takes few, if any, steps to prevent this 
happening. For example, it is very easy to drive ADSYN into aliasing by editing the 
text file that it creates; this is done simply by changing some of the frequency values 
to lie above the Nyquist limit of sr/2. If you want to demonstrate aliasing to 
somebody, this is probably the easiest way to do it. Similarly, any upwards 
transposition can result in aliased components. For this reason, a precautionary low-
pass filtering operation is always advisable before doing such a transposition: to 
remove the higher components which could alias. If there is a signal with high energy 
components and aliasing is experienced when it is transposed, the rule of thumb is to 
low-pass filter the original by Nyquist / transposition interval and transpose again. 
Also, only generate sounds with frequencies up to sr/2.  



Aliasing can however be induced simply by creating any non bandlimited waveform, 
of which the square wave is the most common example. A 'true' square wave has an 
infinite number of partials, though the high ones are then infinitely small. 
Unfortunately, enough of them are large enough to cause a problem even at low 
frequencies. The first figure below shows one cycle of a square wave, together with 
its FFT (using a 1024-sample rectangular window). The amplitude of the high partials 
just about falls to inaudibility at the Nyquist limit. At the low sample rate, this signal 
would have a pitch of 21.5Hz.  

 

[Fig 12: square wave -> FFT]  

Compare this with the next figure - the pitch has risen three octaves to 64.5Hz - still 
quite low, but the aliasing already shows up very clearly:  

 

Fig 13: 3-cycle square wave -> FFT  

This shows the periodic nature of the sampled spectrum very clearly - any alias 
components 'wrap around' both the Nyquist limit and DC and appear as lower spectral 
components.  

In fact, the aliasing is present even in the previous figure, but the alias components 
fall in already occupied channels - there is constructive interference. The result is that 
the harmonics appear stronger than they really are.  

In both figures, the square wave fits the FFT window exactly - there is no spectral 
leakage. If, however, the signal did not fit exactly, as is most likely, most if not all of 
the alias components would be swamped by the spectral leakage:  



 

Fig 14: 17.5 cycle square wave -> FFT  

9.Addendum - Testing filters with the FFT  

At the beginning ot this text, mention was made of the need to be very clear about the 
effect of a filter on a soundfile. It would seem that the only way to do this is to run a 
filter with a set of parameters, listen to the result (and perhaps check it with the FFT), 
and if it is not right, alter the parameters and repeat the process. This is time-
consuming, especially if the filter operation takes a long time. Also, as we have seen, 
the FFT itself can be difficult to interpret - typically, the FFT outputs a great deal of 
'noise', implying the use of a stronger filter than is really necessary. Another problem 
is that many of the CDP filter programs do not reliably apply exactly the levels of cut 
or boost that you have specified. Testing them directly on a complex soundfile would 
be impractical and also confusing, as you would need to correlate the output with the 
input to ascertain exactly what effect the filter is having. Testing a filter with a noise 
source is better, but still not ideal.  

This section suggests an alternative to the above. Fortunately the FFT can itself be 
used to test a filter directly, and very quickly. All that is needed is a reference 
soundfile for testing. This would be a short soundfile containing an impulse - a single 
sample of maximum amplitude, followed by a suitable number of zero samples. One 
possible way to make this reference soundfile is to extract a single sample by setting 
marks in VIEWSF's a mode (set the marks with the Function keys), cut out this 
sample with CUT and marks.dat (which will be automatically created when you exit 
VIEWSF). Then mix your one-sample soundfile with a short soundfile of SILENCE 
(made with SIGNAL or WAVE). This soundfile can now be used for all your tests.  

STEP 1 - Run the filter program to be tested with the impulse soundfile, using the 
parameters you thought would work with the big soundfile you intend to filter; the 
resulting soundfile reveals that filter's impulse response: The example below used 
FSTATVAR and the following parameters: low-pass, a centre frequency of 440, Q of 
1 (1 in this case because a very compact display was needed; normally Q will be 
somewhere between 1 and 100), and a gain of 1.  

STEP 2 - The resulting soundfile is then displayed by VIEWSF.  



 

Fig 15: impulse soundfile -> filter (FSTATVAR) -> impulse response (seen with 
VIEWSF)  

STEP 3 - We can now apply the FFT to this, using SPECT with the impulse response 
option (the -f flag), and the output gives the frequency response of the filter:  

 

Fig 16: impulse response (seen with VIEWSF) -> FFT (SPECT) -> freq. response 
(seen with DISP)  

STEP 4 - Display with DISP. Note that, at present, DISP cannot recognise the output 
of SPECT using the -f flag. You can use the 'crude' screen plot of SPECT itself, or run 
SPECT using the -d and -r flags (the latter setting a rectangular window); the output 



from this can then be displayed by DISP. Check the length of the impulse response 
using VIEWSF, and make sure that you set an FFT window large enough to 
accommodate it. A 1024-sample window should cover all but exceptional cases.  

The DISP display graphically illustrates the amplitude roll-off across the range of 
frequencies. This should provide a reasonable idea of what will happen if you use the 
same filter with the same parameters to your original soundfile. Over a period of time, 
this procedure should build up a more accurate understanding of the behaviour of 
various programs.  

One final point. Remember that SPECT normalises the output unless the -u flag is 
used (see p.5 above). To see the actual peak response of the filter, therefore, use the -u 
flag so that the peak isn't normalised to maximum on the display -- if the peak is at -
10dB, we need to know that!  

In principle, this method of testing the results can be applied to any program that 
generates multiple output samples for a single input (ie, based on some form of delay 
process). This includes programs such as ALLPASS, DELAY (short delays create 
comb filters), and even reverb programs such as the one in CSOUND.  

Richard Dobson  

Frome, Somerset  

June 1993  
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