

The Operation of the Phase Vocoder
A non-mathematical introduction to the Fast Fourier

Transform

by Richard Dobson

This document has been written for CDP at my request in order to
further a deeper technical understanding of how the Phase Vocoder
works. In doing so, Richard has in fact also given a general
introduction to a number of important features of digital filtering.
Watch for these key ideas: that the Phase Vocoder works by comparing
the incoming signal with its own in-built signal; that this comparison is
equivalent to a filtering operation (focusing in on a given harmonic /
frequency); that the filtering process is why discussion of 'sidebands',
'aliasing', 'band-limited signals', 'Nyquist' etc. is relevant. All this may
help us to anticipate a little better what may happen when we time
stretch etc. and perform spectral manipulations on various types of
sound. Lastly, Richard shows how to use SPECT and DISP to analyze
the behaviour of a certain types of program (such as FSTATVAR),
using a 1 sample soundfile made as a control reference. (AE)

Introduction
Frequency domain analysis and processing tools are arguably the most important
resources available to the electronic music composer wherever the timbre of a sound
is the prime concern. The most common frequency domain tool is the filter, familiar
to users of both analog and digital synthesis systems. However, whereas an analog
system allows filtering to be performed empirically and interactively, by moving a
slider or turning a knob, with the effects immediately apparent to the ear, a general-
purpose digital system such as the CDP Computer Music System is not designed with
real time operation as a primary consideration. In the frequency domain especially,
which is computationally demanding in a digital system, it does not allow immediate
feedback, although the use of the DSP on the Atari Falcon will make this possible
with certain selected operations. Filtering operations can take some time, and the
composer needs to have a very precise idea of what the filter has to do, so that
valuable time is not wasted by the use of either an inappropriate program or of
unsuitable parameters passed to it. This document is intended to help develop the
ability to assess what needs to be done.

The key to success in this task is a reliable tool for analysing the spectral character of
a soundfile, which complements the sophisticated discrimination of the human ear
with precise numerical analysis. The Fast Fourier Transform (FFT) is such a tool.
However, the mathematical basis of its operation is all but incomprehensible to non-
specialists, while its output can be misleading and confusing unless its principles are
well understood. The following paragraphs present the FFT as non-mathematically as
possible, yet attempt to explain it in sufficient detail for its role in the Groucho
program SPECT and in the PHASE VOCODER and its associated programs, to be
understood and used effectively.

1. Frequency detection
The FFT takes as its basis a principle formulated by Jean Baptiste Joseph Fourier
(1768-1830). This principle is that all complex periodic waveforms (that is to say,
waveforms with a clear pitch) can be modelled by a set of harmonically related
sinewaves added together. Waves are said to be harmonically related when they are
integer multiples of the fundamental. This is the basis of classical additive synthesis.
Each sinewave corresponds to a harmonic of the fundamental frequency of the sound.
The harmonic structure of a common analog waveform such as the sawtooth or square
wave can be determined mathematically, and (under ideal conditions) can be precisely
measured by an analysis tool such as the FFT :

Fig 1A: downward sawtooth -> FFT -> spectrum

Fig 1B: square wave -> FFT -> spectrum

So, how does the FFT detect all these harmonics? It seems especially clever in the
case of a square wave, which appears as far removed from the smooth shape of a
sinewave as it is possible to be. It is really a case of pattern matching. The FFT is
itself a periodic, harmonic-rich entity, and it detects which of its own many virtual
sinewaves are also present, strongly or weakly, in the input signal by comparing its
own virtual signal with the input signal. It does this form of 'pattern matching' by a
process of multiplication.

When you multiply a signal by another, you are performing a 'ring modulation'. In the
simplest case, the input to the ring modulator consists of two sinewaves, in which case
you get two sinewaves at the output. One has a frequency equal to the numerical sum
of the frequencies of the inputs, and the other is the difference between them. For
example, if you multiply a sinewave at 440Hz by a sinewave at 441Hz, you get a
signal consisting of a sinewave at 881Hz and a sinewave at 1Hz. Make the two inputs
equal and you get an output, seemingly, of just one sinewave, at 880Hz:

Fig 2: sine * sine -> sine

However, as the figure shows, this is not 'just' a sinewave, as it lies all above the zero
line - there is a positive DC offset. This offset is directly proportional to the
amplitudes of the input signals. Therefore if one of these is at a fixed 'reference' level,
the output can provide a direct measure of the amplitude of the other. We can derive a
value for this simply by averaging the waveform (actually a low-pass filtering
process) - adding up the instantaneous amplitudes of each point of the waveform and
dividing the result by the number of points. Putting it another way, the areas under the
positive half of the waveform are added to the areas under the negative part. An
ordinary sinewave would yield an average of zero, as the two halves cancel exactly,
but the waveform in the figure above would yield a net positive value.

This process can clearly be extended in principle to arbitrary input signals by
sweeping the frequency of the reference sinewave continuously though the audible
range and recording the fluctuating amplitude of the output - any non-zero value
signifies the presence in the input of a harmonic at that frequency and amplitude.
Unfortunately, such an ideally perfect variable ring modulator is extremely difficult to
design - apart from any other considerations it would probably be impossibly
expensive.

Instead, we will have to make do with a digitally sampled version in the FFT. Instead
of sweeping continuously through the audible range, it simply samples the input
waveform at multiples of its own fundamental frequency. If this is low enough, the
output will still give a good image of the spectrum of the input.

(Actually, in its mathematical guise, the Fast Fourier Transform is a streamlined
version of the full Fourier Transform, which is continuous over the frequency range,
and which, as a mathematical tool, enables the spectrum of a periodic geometric
waveform to be determined by hand calculation. The digital version of this continuous
sweep, such as might be applied to some arbitrary waveform, is the Discrete Fourier
Transform. Unfortunately, this is agonisingly slow for the low fundamental
frequencies we need, which is why the Fast Fourier Transform was developed. What
the FFT can do in seconds, the DFT may take hours or even days to calculate!)

2. The FFT as a filter bank
The frequency-sampling nature of the FFT means that it behaves just as would a bank
of carefully tuned analog filters - which is what the analog spectrum analyser
comprises. The more precise the measurements are to be, the narrower the pass-band
of each filter must be, and the greater the number of filters required. Suppose that
each filter had a bandwidth of 20Hz. It would require 1000 filters to cover the whole
audio range (20 to 20,000Hz). However, this is surely overkill. Certainly, at 440Hz a
bandwidth of 20Hz seems reasonable - a little less than a semitone. But at 4KHz it
represents around one tenth of a semitone, unnecessary precision for most purposes.

It is hardly surprising, then, that commercial audio spectrum analysers space their
filter bands not in linear (evenly spaced) frequency increments but in logarithmic
(expanding) interval increments, one third of an octave being standard in professional
studio equipment. (Note that the octave series relates to pitch in a logarithmic manner:
more and more frequencies are contained within each (higher) octave; e.g., 220 -> 440

-> 880 -> 1760 -> 3520 etc.; thus 'one third of an octave' will span more frequencies
as one goes higher.).

Unfortunately, the FFT is not economical in this way. It distributes its filters linearly
across the audio range, which means that at high frequencies it is if anything too
precise, but at low frequencies not precise enough to identify the pitch of a note
within a semitone. This is really an unjust criticism of the FFT, since the periodic
signals for which it was originally designed would not have partials that close
together; it is only mentioned here because, inevitably, the FFT will be used on
complex polyphonic sounds in which partials may well be as close or closer. Hence
the uncertainty about what it may find between the expected harmonic partials. Used
in this way, the FFT outputs what is best thought of as a statistical or general measure
of the dominant pitch regions of a sound - its spectral envelope.

(A recently developed analysis and resynthesis tool, the wavelet transform, has much
in common with the FFT, except that its analysis filters are spaced logarithmically.
Graphical pictures of wavelet analyses correspond much more closely to the
perception of the ear than does the FFT. Interested readers are directed to the article in
Computer Music Journal Vol 12.4, and to the book Representations of Musical
Signals, ed. Poli, Piccialli and Roads, recently published by the MIT Press.)

3. Frequency resolution
Although the FFT as a whole is a complex mathematical process, in terms of the filter
bank model it is still rather crude. Each filter is rather simple, and does not, in fact,
exclude all but a narrow band of frequencies. Each filter generates a set of sideband
responses above and below the nominal centre frequency. Furthermore, the filters
overlap each other. Consequently, a frequency in the input that does not sit exactly on
the centre frequency of a filter will register on the outputs of several other filters on
either side, a phenomenon known as 'spectral leakage'. In the figures below, the first
shows the FFT analysis of a sinewave corresponding exactly to the centre frequency
of one of the FFT filters; for the second figure the frequency of the signal has been
moved to a point half-way between two filters. The effect on the FFT output is
striking, to say the least.

Fig 3 Fig 4

It is even worse if the vertical scale is recast in dB to show the relative power level of
each filter response, rather than amplitude:

Fig 5

One could be forgiven for thinking that something was very wrong here. We might
have expected two filters to register, not the mass response shown above. However,
once the periodic nature of the FFT is understood, the result above will make much
more sense.

(There is another consequence of spectral leakage - the maximum amplitude given by
the FFT has reduced, as energy in the input signal has also leaked into adjacent filters.
It is not very much - around 3dB on average, but it shows that, sometimes, the
amplitude values of spectral peaks in the FFT may have to be taken with a small pinch
of salt - some signals may be significantly stronger than the FFT suggests. Note also,
when using SPECT, that if you want the FFT output to reflect the absolute (actual)
signal level with respect to frequency, you need to use the -u flag, otherwise for
display purposes the output will be normalised (i.e., 'scaled' to the maximum
amplitude range) by setting the highest spectral peak to maximum amplitude and
adjusting the other values accordingly.)

4. The FFT Window
At this point we need to look a little more closely at the practical implementation of
the FFT. Intuitively we can see that while we can quite reasonably speak of the
instantaneous amplitude of a signal (simply a single sample value), we cannot so
easily speak of instantaneous frequency. Experiments in psycho-acoustics have
established that the ear cannot recognise the pitch of a sound until it is at least some
20msecs long (0.023 sec). Imagine an amplifier with a faulty connection - somewhere
the signal is continuous but we only hear intermittent blips. Unless these blips are
20msecs or more, we cannot hear a pitch, only a click. If we wanted to identify what
instrument was playing, we would need much longer blips - even half a second might
not be enough.

These blips are, in effect, short windows onto the sound. The input to the FFT is such
a window - a short block of samples. At a sample rate of 22050 per second, a block of
256 samples represents just over 23msecs, and is arguably the shortest useful window
length for the FFT (note also its fundamental frequency: 22050/256 = 86.1Hz, which
is rather high -- about F immediately below the bass clef). In the figures below, a
short signal is shown with an FFT window superimposed on it; the second figure
shows the window portion separately, as the FFT sees it.

Note that this 'window' is a rectangular shape, cutting through the wave wherever the
edge of the window falls, irrespective of whether the value at the edge is non-zero.

This means that abrupt changes of amplitude may and probably will take place at
these edges, as one window follows another -- and these abrupt changes can cause
clicks in the sound.

Fig 6 (upper) and Fig 7 (lower)

We can see that the signal is a sinewave, and might intuitively expect the FFT
analysis to show one spectral line. However, the FFT assumes that its window is
equivalent to exactly one cycle of a periodic waveform, so it thinks the waveform
really looks like Fig 8 (the waveform's periods are formed by a series of its analysis
windows). Note the irregularities in what should be a smooth sinewave and how the
pattern repeats -- these show the edges of the analysis windows:

Fig 8

Clearly this would not sound anything like a sinewave! The output of the FFT now
seems much more understandable, if annoying.

Looking at the contents of the window, we can see clearly that the problem is caused
by the discontinuity between the ends of the windowed signal. The FFT is, so to
speak, out of tune with the input signal. In fact, the chances of the FFT window ever
being exactly in tune with the input signal are fairly remote - we can safely assume
that such discontinuities will be the rule, not the exception.

It seems reasonable to suppose that if we could somehow squash the ends of the
window to reduce the discontinuity, the FFT might not be upset so much. This is
indeed what is done. The window function most commonly used is the Hamming
Window, which is illustrated below, together with the FFT analysis of the signal used

previously, multiplied beforehand by the Hamming Window. (The illustration of the
Hamming window is an approximation.)

Fig 9: plain wave Fig 10: Hamming windowed wave Fig 11: FFT

Although it is not perfect, it is clearly a great improvement on before, which used a
rectangular window. Note that the program SPECT offers the option to use a
rectangular window instead of the Hamming Window, and the companion display
program DISP can plot the FFT either as a spectral envelope or as discrete spectral
lines, so this combination is ideal for experimentation. The Phase Vocoder does not
include a rectangular window option.

One side effect of the use of the Hamming or similar window is that partials which are
exact harmonics of the FFT fundamental frequency will now no longer show up as
single spectral lines (the input has, in effect, been amplitude modulated: the amplitude
is made to rise from and fall to zero at the edges of the window); it is, however, a
price well worth paying, especially given the rarity of exact harmonics in 'real'
signals.

5. Window Length - or, how to hit a moving target
From the above it would seem that a long window of, say, 1024 samples, has to be
better than one of 256 samples, as the frequency resolution is so much better. This is
indeed true, but it is also important to remember that at the low sample rate (22050),
1024 samples represents some 46msecs (ie just under a 20th of a second: 1024

samples \ 22050 sr = 0.046 sec), during which quite a lot can happen, especially if you
are analysing something such as the attack of a trumpet, or of a percussive sound.

A long window has better frequency resolution but worse time resolution. In the Phase
Vocoder this dilemma is resolved to a great extent by overlapping the windows. For
example, using a window of 1024 samples, successive FFTs will be applied to
windowed portions starting at sample 1, 64, 128, 192, 256, and so on, moving through
the sound in steps of 64 samples, whilst creating frames of 1024 samples. In this case
the analysis sampling rate has octupled, from 21.53Hz to 172.26Hz, or from 46msec
steps down to around 5msecs. Only for zero overlap is the analysis sampling rate
equal to the fundamental frequency of analysis. However, this is not satisfactory in
the case of the Phase Vocoder, because of the use of the Hamming window, which
requires that there be an overlap of at least two for the original waveform to be
reconstructed exactly.

6. Window length -- or, tuning in
From the above it is clear that frequency resolution is one of the most important
parameters of the FFT. With the Phase Vocoder, this can indeed be specified directly,
up to a point, by setting the F flag to some value. The Phase Vocoder warns that you
cannot set both F and N (the length of the analysis window in samples), showing that
these flags are intimately related alternative ways of controlling one parameter.

Specifying window length (N) In both SPECT and the Phase Vocoder it is
recommended that the window length for the analysis be a power of two - for
example, 256, 512 or 1024 samples. This is because the FFT algorithm is particularly
efficient with such values - when you are doing probably hundreds or thousands of
FFT's in the Phase Vocoder you would need a very good reason indeed not to use the
fastest type of FFT algorithm possible.

However, the FFT can work with other window lengths, and will still be fairly
efficient so long as the length is very 'composite' - has a large number of factors. Thus
a length of, say, 384 (= 2*4*6*8) would also work very well. In the worst case, a
number with few or no factors would reduce the FFT to the DFT, which as explained
above is very, very, slow. It would be sensible to go on a world cruise, or a three-year
Buddhist retreat, if you apply the DFT to a long soundfile.

Specifying Frequency (F) The reason that the F option is available at all is that you
may well want to 'tune' the FFT as closely as possible to a known fundamental
frequency in your soundfile. Instead of defining the window length, you can define
the desired fundamental frequency, and the nearest available window length will be
selected for you. The one constraint is that the window length be even.

Thus, if you ask the Phase Vocoder to tune itself to 50Hz, it could do so exactly if the
window length was able to be 441 samples long (22050 sr \ 50Hz = 441 samples); this
is in fact rounded up internally to 442 samples - not, as it happens, an ideal length for
a window, as explained above. You will almost certainly find it more sensible to
calculate what the ideal window length should be, and then give the FFT the nearest
efficient length.

For example, if you want to tune to 440Hz (at the low sample rate) the nearest integer
window length will be 50 (rounded down from 50.1 -- 22050 sr \ 440Hz = 50.1
samples). A much better window length would be 54, and, of course, a length of 64
would be the most efficient of all. An alternative course of action, if you really want
the greatest accuracy possible, is to tune the soundfile to the FFT (ie to transpose it
using FTRANS). Anyone who seriously wants to do this can probably work out the
transposition ratios for themselves!

7. Waveform phase and channel counts
There is one feature of the FFT that has proved a potential source of confusion. The
number of 'channels' output by the FFT is usually stated as being half the number of
samples in the window. For example, a window of 1024 samples results in an FFT
output of 512 channels. There is in fact a very simple explanation for this, which
relates directly to the question of the highest frequency which can be accommodated
by a given sample rate. It requires a minimum of two samples to represent a single
cycle of a sinewave - one positive and one negative. Thus, the maximum frequency
which can be represented in a digital soundfile is exactly half the sample rate (the
Nyquist limit). The FFT behaves in the same way - it takes N samples and outputs
N/2 channels.

Behind this explanation lies a very important mathematical assumption - that the input
signal is 'real'. The terms 'real' and 'imaginary' crop up frequently in digital signal
processing, and belong to the mysterious world of 'complex' numbers (see, for
example, the documentation for SPECT).

In a much simplified way of understanding the relationship between 'real' and
'imaginary', a sinewave is considered as an 'imaginary' signal and a cosine wave as
'real'. A complex number comprises both a real and an imaginary part. If you imagine
a graph with the sine function on the Y-axis (up-down) and the cosine function on the
X-axis (right-left), then a complex number equates to the co-ordinates of a point on
that graph. Alternatively, this point can be specified in terms of an amplitude (radial
distance from the origin) and an angle, measured from the X axis. This 'polar'
representation is widely used in signal processing, and is central to the operation of
the FFT.

All that is really going on here is a need to recognise the phase of the input signal. A
sinewave is simply a cosine wave shifted to the right a quarter of a cycle. Without the
use of both sine and cosine waves in the FFT we would not be able to tell what are the
relative phases of all the components of the input. Some may be pure sinewave, others
pure cosine wave, but the majority (perhaps all) will be somewhere in-between; that
is, the frequency components start at different places in the cycle.

For simple analysis purposes this does not matter very much, but it does matter as
soon as we want to recreate the waveform from the channel data, as is done in the
Phase Vocoder. Here we are not only recreating the data in one window, we are
recreating several overlapping windows. Clearly the phase must be continuous from
one window to the next, otherwise there will be gross discontinuities in the output.

Phase information is generally not of great relevance to the musician, and you may
never need to trouble yourself with it, but it exists as an inevitable consequence of the
FFT process. To put this another way, there is no information lost by the FFT, so that
applying the 'inverse FFT' to the unmodified spectral data will recreate the original
waveform exactly. Needless to say, this is a musically pointless exercise - the great
strength of the Phase Vocoder and its associated programs is that it allows the
composer to manipulate the spectral content of a complex input signal in arbitrary
ways. The fact that it may be difficult to interpret a single FFT output of a spectrally
complex input does not mean that the information has somehow got lost or damaged
in some way - it simply means that it is difficult to interpret!

In the Phase Vocoder an additional channel centred on 0Hz is generated. This serves
to register signals below the fundamental frequency of the FFT more precisely than
the 'raw' FFT can manage. In the latter, any wavecycle too long for the FFT window
will register as a signal at the fundamental frequency (ie not at DC), together with a
considerable number of sideband responses. The extra channel seems to help in the
alignment of near-DC phase between FFTs and thus improve low frequency
resolution and continuity. If you study 'pvoc.s', the file created by the Phase Vocoder
using the -V flag, you will see that this first channel has a low boundary of negative
frequency, for example -43Hz to +43Hz. A negative frequency corresponds to an
inversion of phase. Thus the first channel tracks the phase of any sub-fundamental
signal across the overlapping FFTs.

As mentioned above, the FFT is directly invertible - the original waveform can be
reconstructed exactly. This is still true to a great extent even where there is such a
sub-fundamental component in the input. The problems really show up when the re-
synthesis is combined with something like time-stretching (one of the primary
applications of the Phase Vocoder) - the result will be lumpy, probably full of
glitches, and the pitch content of the output will not bear much relation to the input.

8. Spectrum aliasing -- the importance of 'band-
limited' signals
Any mention of the Nyquist limit reminds us of the importance of ensuring that all
signals which are to be sampled or processed digitally need to be 'band-limited': that
is, there must be no signal components higher than half the sample rate. Being
markedly permissive, the CDP System takes few, if any, steps to prevent this
happening. For example, it is very easy to drive ADSYN into aliasing by editing the
text file that it creates; this is done simply by changing some of the frequency values
to lie above the Nyquist limit of sr/2. If you want to demonstrate aliasing to
somebody, this is probably the easiest way to do it. Similarly, any upwards
transposition can result in aliased components. For this reason, a precautionary low-
pass filtering operation is always advisable before doing such a transposition: to
remove the higher components which could alias. If there is a signal with high energy
components and aliasing is experienced when it is transposed, the rule of thumb is to
low-pass filter the original by Nyquist / transposition interval and transpose again.
Also, only generate sounds with frequencies up to sr/2.

Aliasing can however be induced simply by creating any non bandlimited waveform,
of which the square wave is the most common example. A 'true' square wave has an
infinite number of partials, though the high ones are then infinitely small.
Unfortunately, enough of them are large enough to cause a problem even at low
frequencies. The first figure below shows one cycle of a square wave, together with
its FFT (using a 1024-sample rectangular window). The amplitude of the high partials
just about falls to inaudibility at the Nyquist limit. At the low sample rate, this signal
would have a pitch of 21.5Hz.

[Fig 12: square wave -> FFT]

Compare this with the next figure - the pitch has risen three octaves to 64.5Hz - still
quite low, but the aliasing already shows up very clearly:

Fig 13: 3-cycle square wave -> FFT

This shows the periodic nature of the sampled spectrum very clearly - any alias
components 'wrap around' both the Nyquist limit and DC and appear as lower spectral
components.

In fact, the aliasing is present even in the previous figure, but the alias components
fall in already occupied channels - there is constructive interference. The result is that
the harmonics appear stronger than they really are.

In both figures, the square wave fits the FFT window exactly - there is no spectral
leakage. If, however, the signal did not fit exactly, as is most likely, most if not all of
the alias components would be swamped by the spectral leakage:

Fig 14: 17.5 cycle square wave -> FFT

9.Addendum - Testing filters with the FFT

At the beginning ot this text, mention was made of the need to be very clear about the
effect of a filter on a soundfile. It would seem that the only way to do this is to run a
filter with a set of parameters, listen to the result (and perhaps check it with the FFT),
and if it is not right, alter the parameters and repeat the process. This is time-
consuming, especially if the filter operation takes a long time. Also, as we have seen,
the FFT itself can be difficult to interpret - typically, the FFT outputs a great deal of
'noise', implying the use of a stronger filter than is really necessary. Another problem
is that many of the CDP filter programs do not reliably apply exactly the levels of cut
or boost that you have specified. Testing them directly on a complex soundfile would
be impractical and also confusing, as you would need to correlate the output with the
input to ascertain exactly what effect the filter is having. Testing a filter with a noise
source is better, but still not ideal.

This section suggests an alternative to the above. Fortunately the FFT can itself be
used to test a filter directly, and very quickly. All that is needed is a reference
soundfile for testing. This would be a short soundfile containing an impulse - a single
sample of maximum amplitude, followed by a suitable number of zero samples. One
possible way to make this reference soundfile is to extract a single sample by setting
marks in VIEWSF's a mode (set the marks with the Function keys), cut out this
sample with CUT and marks.dat (which will be automatically created when you exit
VIEWSF). Then mix your one-sample soundfile with a short soundfile of SILENCE
(made with SIGNAL or WAVE). This soundfile can now be used for all your tests.

STEP 1 - Run the filter program to be tested with the impulse soundfile, using the
parameters you thought would work with the big soundfile you intend to filter; the
resulting soundfile reveals that filter's impulse response: The example below used
FSTATVAR and the following parameters: low-pass, a centre frequency of 440, Q of
1 (1 in this case because a very compact display was needed; normally Q will be
somewhere between 1 and 100), and a gain of 1.

STEP 2 - The resulting soundfile is then displayed by VIEWSF.

Fig 15: impulse soundfile -> filter (FSTATVAR) -> impulse response (seen with
VIEWSF)

STEP 3 - We can now apply the FFT to this, using SPECT with the impulse response
option (the -f flag), and the output gives the frequency response of the filter:

Fig 16: impulse response (seen with VIEWSF) -> FFT (SPECT) -> freq. response
(seen with DISP)

STEP 4 - Display with DISP. Note that, at present, DISP cannot recognise the output
of SPECT using the -f flag. You can use the 'crude' screen plot of SPECT itself, or run
SPECT using the -d and -r flags (the latter setting a rectangular window); the output

from this can then be displayed by DISP. Check the length of the impulse response
using VIEWSF, and make sure that you set an FFT window large enough to
accommodate it. A 1024-sample window should cover all but exceptional cases.

The DISP display graphically illustrates the amplitude roll-off across the range of
frequencies. This should provide a reasonable idea of what will happen if you use the
same filter with the same parameters to your original soundfile. Over a period of time,
this procedure should build up a more accurate understanding of the behaviour of
various programs.

One final point. Remember that SPECT normalises the output unless the -u flag is
used (see p.5 above). To see the actual peak response of the filter, therefore, use the -u
flag so that the peak isn't normalised to maximum on the display -- if the peak is at -
10dB, we need to know that!

In principle, this method of testing the results can be applied to any program that
generates multiple output samples for a single input (ie, based on some form of delay
process). This includes programs such as ALLPASS, DELAY (short delays create
comb filters), and even reverb programs such as the one in CSOUND.

Richard Dobson

Frome, Somerset

June 1993

	The Operation of the Phase Vocoder
	Introduction
	1. Frequency detection
	2. The FFT as a filter bank
	3. Frequency resolution
	4. The FFT Window
	5. Window Length - or, how to hit a moving target
	6. Window length -- or, tuning in
	7. Waveform phase and channel counts
	8. Spectrum aliasing -- the importance of 'band-limited' signals

