TR,

nd Music Computing
T TR~ @D

Script-Music-TV
Getting Started with Tabula Vigilans

by Dr Archer Endrich

“A Richard Orton Legacy”™

Tabula Vigilans ('TV') has a very clear syntax and many built-in music-related
functions that are not part of other programming languages, so we are proposing
that it is a powerful ready-made music language that is ideal for a teaching
environment. However, note that programming languages often have a lot in
common. What we have written here can easily be 'translated’ to another similar
programming language (such as Python, SonicPi or whatever). There are usually
just a number of little differences in syntax to remember. Thus there can also be a
Script-Music-Python, for example, but with more to do to recreate TV's music
functions.

Script-Music-TV is a comprehensive introduction and tutorial manual set for Tabula
Vigilans. It is based on the large number of scripts written by Richard Orton. These
scripts comprise an important part of his legacy. In assembling them here, I have
sought to use them both to show how to write scripts for 'TV' as well as to
illustrate a number of musical objectives, goals placed very much more within
reach than they would have been thanks to Richard's profound insight into the kind
of processes useful to achieve effective musical results. — Archer Endrich

About Tabula Vigilans

Tabula Vigilans ('TV') was conceived and written by Richard Orton (1940-2013) as a musical
spreadsheet. The concept taken from that of a spreadsheet was the way it would recalculate
all the values on the sheet at once. Richard realised how such a system could enable complex
algorithmic instructions to be updated at high speed, thus making possible a real-time
musical instrument, initially using MIDI (Musical Instrument Digital Interface).

The key to this instant recalculation and real-time operation was that the computer would
loop around the main procedure of the program at machine speed. This procedure was
named start() and it 'contains' all the other procedures of a script, whether within itself or
called from it. Part of what one needs to learn in using TV is how to avoid everything
happening at once!

TV is a specialised programming language for music. It has many built-in functions that are
specially designed as musical facilities. Some of these are directly musical functions such as
'midiout’ to play sounding output, and others are designed to produce and shape data for
musical purposes. An example of the latter is 'lin', which can be used to produce time-varying
output between defined limits. There are also a full range of mathematical functions.

A further development of Tabula Vigilans made it possible to run external programs from
within a TV script. This was implemented by Professor John Ffitch and uses an 'system’
function. (He is currently developing a keyword editor for TV.) This means that a TV script can
be used to run external commandline programs, such as those in the Composers Desktop
Project ('CDP') system. Furthermore, it can be used to write specialised breakpoint or text
files used by the CDP programs. This opens up a vast field of possibility. It was Nick Fells who



paved the way for this line of development by writing a TV script to output score files for
Csound, and Archer Endrich later applied the method to CDP file formats when working on
the LHCsound sonification project.

Tabula Vigilans runs from the command line. It helps to have the TV executable in your
system path. A CDP user is recommended to put it in the CDP program directory (usually
_cdprogs) and to ensure that this directory is in the system path. TV will then will run no
matter which is your current directory.

On PC open cmd.exe (a shortcut on Desktop is helpful), and on a MAC open the Terminal.
Then 'cd' (change directory) to the directory in which you want to work. Write your script with
any plain text editor, bearing in mind that one which displays line numbers will be helpful
when your scripts start to get longer. Give your script the extension '.tv'. If you use emacs,
bear in mind that filenames (still?) are restricted to 8 characters plus the extension (which
can be any two or three characters, a useful feature). You then run your script with cmd.exe
or in the Terminal with command lines such as tv ascript.tv. If there should be sounding
output, you can activate immediate playback with the -i flag: thus tv -i ascript.tv.

About Scripting

Scripting is your friend. We take graphic user interfaces (GUIs) to be the norm, so it can
come as a bit of a shock that you are expected to type in text in order to run Tabula Vigilans
and other scripting languages. This text is a 'script' that is actually your own custom-designed
computer program. Not only that, but the resulting scripts are run by typing in a
commandline in the command line interpreter (cmd.exe on PC and Terminal on MAC). This is
why we have named this approach Script-Music. Despite the initial shock, it is a very, very
powerful way of going about things. You are closer to the operating system of your computer,
and you are very much in control of the open-ended evolution of your own algorithmic music
system. The ability to type fluently will increase your speed and enjoyment
enormously.

Besides the script, the interface with the computer is its command line interpreter. A
command line has these components:

e the name of an executable program (with or without its extension)

e any parameters that the program requires, including any optional ones that you want to
use

e the full name of the script you want to run, including its extension

e any parameters that the script requires, including any optional ones that you want to
use

The 'usage' of a program gives its name and all required and optional parameters (ideally
with explanations!). The usage is displayed if you just type in the program's name in the
command line interpreter and then press 'Return’. 'Flags' are usually single letters preceded
by a minus sign, and these invoke some function of the program. Optional parameters are
shown inside square brackets, e.g., [-f]. Files may also be submitted to the program if it is
designed to open and read them.

Here is a sample command line to run Tabula Vigilans:

tv -i mytune.tv melody.txt
We invoke the 'tv' program with the '-i' flag for immediate playback, give it our handwritten
script 'mytune.tv' and provide a text file which contains a series of pitches that mytune.tv will
use. Thus we have what is really a very simple, direct, controllable, and extensible
environment. What is not simple is music itself, and you will soon find that good musical
results are not so easy to obtain, and programming expertise at some level is vital. But the
lure of the possible is a powerful incentive, and the beauty of music is enticing. It is a very
rewarding path. The built-in music functions of TV enable you to concentrate on data and
control flow, and your innate musical imagination will be your guide.



About the start() Procedure

The start() procedure, around which the computer loops at machine speed, is where it all
happens. This container for all the rest of your code looks like this:

start()
{

It will have some code within itself, and from it you will call other procedures to carry out
specialised tasks. Designing and placing procedures is an essential part of learning to write
computer programs effectively.

About Messages

NB: It is useful to put a shortcut to the Tabula Vigilans manual on your desktop! For
example, here is the chart of keywords in TV: TV Keywords Chart

Tabula Vigilans, like any programming language, has a number of ways of writing messages,
either to display on the screen or to write into a file to be saved externally. You will see these
commands very early on in the example scripts, so it is just as well to learn about them now.
Other programming languages will have similar commands. Here are the essentials.

* message "Information to display on the screen\n" - this will be shown every time the
program 'sees' this command; note that the text is contained within double-quote
marks. The \n places a line-break ('carriage-return') at the end; it may or may not be
needed, depending on how you want the output to look.

* messagl "Read this only once.<\n>" — This text will be displayed only once, no matter
how many times the computer (loops round and) 'sees' it. It can be useful for diagnostic
messages within loops.

* probi integer - integer is a variable that is ideally an integer, such as 7. If it is not an
integer, only the integer (whole number) part of it will be displayed.

e probe fp - fp is a floating-point variable, i.e., with a whole and a fractional part, such as
7.52. Only two decimal places are shown, but you can

* print bignumber, 10, 6 — the value of bignumber is for example 2.157042 and the print
command here is telling the program to allow for a total of 10 characters (including the
decimal point) and to display 6 decimal places.

A Template TV Script: template.tv

OK. We can finish 'Getting Started' with a template Tabula Vigilans script. There are
‘comments' to tell what everything is. Comments in TV are begun with two foward slashes.
They are neither run by the program or displayed to the screen, but when you look at your
script, they help to remind you what it is meant to do. The usage for the script is displayed.
We will also call an initialise() function and declare and fill a one-dimensional table from an
external text file that is in the current directory. The script first displays the contents of the
table as filled from the file and then displays the same numbers as calculated algorithmically
(a cumulative addition). Finally, it allows you to specify your own numbers on the command
line and will use those: one for the start number and one for the increment.



// Template TV Script: template.tv
// AE - 11 November 2013

table ATABLE[190] //initialises a table of one dimension to hold 10 numbers
//note that it comes before start()
start()
{
if(init == 0) { //fails if init ==
call initialise() //go to the initialise() procedure
}

for(count = @; count < 9; count += 1) { //do 10 times; NB use of @ & 9
number = ATABLE[count] //reading table filled from ten_numbers.txt

probi number //display integer numbers

message "\n" //put a newline after each number
}
messagl "\n" //put in a blank line

messagl "Create the same list of numbers algorithmically:\n"
for(i =0; i< 9; 1 +=1) {

probi startnum //start by displaying startnum (set to 9)
message "\n" //newline after each number
startnum = startnum + 9 //add 9 to the previous number

}

messagl "\n" //put in a blank line

messagl "Use the numbers you gave on your command line:\n"
for(i =0; i< 9; 1i+=1) {

probi anynum //start by displaying anynum (from arg(1))
message "\n" //newline after each number
anynum = anynum + increment //add arg(2) to the previous number
}
}
usage()
{
message "Usage: tv scriptname.tv any_number increment\n" //generic usage
message "\tany_number - your choice of number at which to begin the calculation\n"
message "\tincrement - the number to add in a cumulative addition\n"
message "Example: tv template.tv 10 5\n\n" //this script
//'message' is OK here because usage() is only called once
}
initialise()
{
//display the Usage
call usage()
ATABLE fill_table "ten_numbers.txt" //values in file read into the table
startnum = 9 //hard-wiring this value
anynum = arg(l) //reads in first argument from the command line
increment = arg(2) //reads in second argument from the command line
init = 1 //don't call initialise() again!
}

Last updated: 13 November 2013
© 2013 Archer Endrich, Chippenham, Wiltshire



